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MOLECULAR DYNAMICS CALCULATIONS FOR SODIUM
USING PSEUDOPOTENTIAL THEORY

Richard E. Swanson
B.S., Physics, United States Air Force Academy, 1970

M.S., Physics, The Ohio State University, 1971
Ph.D., Physics, University of New Mexico, 1981

We study the equation of state of sodium using the molecular dy-" ,,

namics technique whereby the classical motion of a system of ions is

solved with the aid of computers. The interaction potential between

pairs of sodium ions consists of coulomb and Born-Mayer repulsion terms

and an effective ion-ion interaction derived from pseudopotential

theory. This theory includes the effects of electron gas screening,

exchange, and correlation. We use a model pseudopotential with param-

eters fit to experimental low-temperature data. By using this technique,

we are able to begin with an atomic description of a simple metal and

proceed to calculate its macroscopic thermodynamic properties.

We calculate equation-of-state points consisting of the total in-

ternal energy in volume and temperature space. For our study, the

volume ranges from 10% expansion to 10% compression of the normal den-

sity and the temperature ranges from 0 to 600 Kelvin. We are able to

calculate directly values of the function that contains the anharmonic

contributions to the energy. We report the results for calculations of

solid sodium in the hexagonal close-packed (hcp) and body-centered

cubic (bcc) phases, and of liquid sodium.

At high temperatures the molecular dynamics system melts. We cool

the liquid sodium back to low temperatures and it forms a metastable

glassy state for whlch we are able to calculate equation-of-state points.

We study the dynamics of the melt transition and define a region where
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partial melting occurs. The upper limit that we place on the melting

temperature is consistent with the observed value and the calculated

heat of fusion, diffusion coefficient, and atomic distributions agree A

veil with experiment.

- We illustrate the unique capabilities of the molecular dynamics

technique by inducing a dynamic bcc-to-hcp martensitic phase change.

We change the shape of the calculational volume, which pushes the bcc

sodium structure over a potential hill. It then spontaneously trans-

forms to the more stable hcp structure.

The results of this study demonstrate that the molecular dynamics

technique, coupled with an interaction potential that adequately de-

scribes the ion-ion interaction in a simple metal, can be used to calcu-

late the macroscopic properties of such systems.
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We study the equation of state of sodium using the molecular dy-

namics technique whereby the classical motion of a system of ions is

solved with the aid of computers. The interaction potential between

pairs of sodium ions consists of coulomb and Born-Mayer repulsion terms

and an effective ion-ion interaction derived from pseudopotential

theory. This theory includes the effects of electron gas screening,

exchange, and correlation. We use a model pseudopotential with param-

eters fit to experimental low-temperature data. By using this technique,

we are able to begin with an atomic description of a simple metal and

proceed to calculate its macroscopic thermodynamic properties.

We calculate equation-of-state points consisting of the total in-

ternal energy in volume and temperature space. For our study, the

volume ranges from 10% expansion to 10% compression of the normal den-

sity and the temperature ranges from 0 to 600 Kelvin. We are able to

calculate directly values of the function that contains the anharmonic

contributions to the energy. We report the results for calculations of

solid sodium in the hexagonal close-packed (hcp) and body-centered

cubic (bcc) phases, and of liquid sodium.

At high temperatures the molecular dynamics system malts. We cool

the liquid sodium back to low temperatures and it forms a metastable

glassy state for which we are able to calculate equation-of-state points.

We study the dynamics of the malt transition and define a region where
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partial melting occurs. The upper limit that we place on the melting

temperature is consistent with the observed value and the calculated

heat of fusion, diffusion coefficient, and atomic distributions agree

well with experiment.

We illustrate the unique capabilities of the molecular dynamics

technique by inducing a dynamic bcc-to-hcp martensitic phase change.

We change the shape of the calculational volume, which pushes the bcc

sodium structure over a potential hill. It then spontaneously trans-

forms to the more stable hcp structure.

The results of this study demonstrate that the molecular dynamics

technique, coupled with an interaction potential that adequately de-

scribes the ion-ion interaction in a simple metal, canbe used to calcu-

late the macroscopic properties of such systems.
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We study the equation of state of sodium using the molecular dy-

namics technique whereby the classical motion of a system of icns is

I solved with the aid of computers. The interaction potential between

pairs of sodium ions consists of coulomb and Born-Mayer repulsion terms

i and an effective ion-ion interaction derived from pseudopotential

theory. This theory includes the effects of electron gas screening,

exchange, and correlation. We use a model pseudopotential with param-

I eters fit to experimental low-temperature data. By using this technique,

we are able to begin with an atomic description of a simple metal and

proceed to calculate its macroscopic thermodynamic properties.

We calculate equation-of-state points consisting of the total in-

ternal energy in volume and temperature space. For our study, the

volume ranges from 10% expansion to 10% compression of the normal den-

sity and the temperature ranges from 0 to 600 Kelvin. We are able to

3 calculate directly values of the function that contains the anharmonic

contributions to the energy. We report the results for calculations of

I solid sodium in the hexagonal close-packed (hcp) and body-centered

cubic (bcc) phases, and of liquid sodium.

At high temperatures the molecular dynamics system melts. We cool

the liquid sodium back to low temperatures and it forms a metastable

glassy state for which we are able to calculate equation-of-state points.

We study the dynamics of the melt transition and define a region where
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i partial melting occurs. The upper limit that we place on the melting

I temperature is consistent with the observed value and the calculated p
heat of fusion, diffusion coefficient, and atomic distributions agree

I well with experiment.

We illustrate the unique capabilities of the molecular dynamics

technique by inducing a dynamic bcc-to-hcp martensitic phase change.

V" I We change the shape of the calculational volume, which pushes the bcc

sodium structure over a potential hill. It then spontaneously trans-

1 forms to the more stable hcp structure.

The results of this study demonstrate that the molecular dynamics

technique, coupled with an interaction potential that adequately de-

scribes the ion-ion interaction in a simple metal, can be used to calcu-

late the macroscopic properties of such systems.
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I. INTRcotentia theory has proved useful in studying many prop-

erties of simple metals (for example, see Refsa. 1-7). It is a method

for solving the Schri~dinger equation which contains the essential fea-

tures of the behavior of the electrons in these metals.

Molecular dynamics is a technique for studying the classical be-

havior of a many-particle system. Newton's second law is solved from

the force between pairs of interacting particles where the force is de-

I termined by the gradient of the interaction potential between pairs of

particles. The interaction potentials most commonly used in molecular

dynamics calculations are empirically determined (for example, the

Lennard-Jones potential). While such potentials are easy to use and

adequately represent the behavior of some systems, they are not appro-

priate to the interactions between the ions in a simple metal.

We propose to use an effective ion-ion interaction potential de-

I rived using the pseudopotential method in our molecular dynamics calcu-

* lations. By doing this we are able to start with the atomic description

of the simple metal and proceed to calculate macroscopic thermodynamic

properties. This effective interaction potential is long range and re-

quires the inclusion of approximately 170 neighbors for each particle

when the forces are calculated.

Additionally, the crystal potential energy of the effective inter-

I action is only a fraction (about (0.2%) of the total energy of the

crystal. The volume-dependent energy terms (such as the electron-gas

kinetic energies and the exchange and correlation energies) are prima-

rily responsible for holding the crystal together. These terms are
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calculated separately and added to the structure-dependent energy, which

I is calculated by the molecular dynamics program.

In the "Background" section of this paper we describe the theory

for both the pseudopotential method and the molecular dynamics technique.A

This discussion has been developed elsewhere, as referenced in the text,

I and we include the features fiportant to our study for completeness.

U In Sec. III and IV we describe the calculation of the effective

ion-ion interaction for sodium and the setup of our molecular dynamics

calculations. We outline in detail the necessary steps for determining

the parameters and run conditions necessary to perform these calculations.

* I In Sec. V we develop the equations necessary for the calculation of

the volume-dependent energy terms, mentioned above, that must be added

to the structure-dependent terms to arrive at the total system energy.

In these first five sections, we describe the technique for using

the quantum mechanical results of pseiidopotential theory in a classical

trajectory calculation of the notion of the ions of sodium. Using this

technique, we calculate equation-of-state points consisting of the sys-

I temn energies at given volumes and temperatures for solid sodium in the hcP

and bcc phases and for liquid sodium. We are able to define the equa-

tion of state for a "glassy" sodium, which is the liquid extended to a

I metastable low-temperature state. The results of these calculationsI

are direct measurements of the anharmonic contributions to the system

I energy for these systems.

One of the major advantages of the molecular dynamics technique is

.1 the ability to follow the dynamics of the system studied. We discuss

the melting of sodium and are able to define a transition region of

partial melting. The calculated heats of fusion and upper limit to the2.
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1 melting temperature are in agreement with observed values. We are also

able to calculate the atomic distributions and diffusion coefficients

for sodium.F

As a final result and as a demonstration of the unique capabil-

ities of molecular dynamics calculations, we present a calculation of

I the dynamics of the bcc -hcp phase change in sodium. We artificially

change the shape of the calculational volume. This pushes the meta-

I stable low-temperature bcc structure over a potential hill. The system

is then able to spontaneously relax into the preferred hcp structure

with an accompanying increase in temperature.

*Our results indicate that the technique described in this paper

adequately represents the behavior of sodium in the volume (10% expan-

sion to 10% compression) and temperature (0-600 K) ranges studied.

I 4

I7
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II. BACKGROUND

m This section discusses the mecessary theoretical background for

development of the technique described in the introduction, by which

we will study the sc.Jum equation of state. Section II.A discusses the

j pseudopotentLal method and culminates with an expression for the total

effective ic.r-ion Iateraction. Section II.B describes the molecular

dynamics te :r. - and the applicable equations.

A. The Pseudopotential Method

m W, calculate the ion motion in a simple metal. A simple metal is

1 one for which the conduction electrons behave very nearly as if they

comprise a free-electron gas.1'2 We assume that the metal consists of

I ions and conduction electrons. The ions are composed of the nuclei and

the core electrons. An ion core does not overlap with other ion cores.

m The core electron states are assumed to be the same as the respective

states in a free atom. 1,3

In this section we describe the pseudopotential method, which is a

technique for solving the Schr8dinger equation for the energy of the

conduction electrons. In Sec. II.A.l we express the electron energy in 4

terms of the pseudopotential. In II.A.2 we restructure the equation

to express the electron energy in terms of an effective ion-ion inter-

action. In Secs. II.A.3 - II.A.5 we incorporate a local approximation to

the pseudopotential and modify the theory to include electron screening,

exchange, and correlation effects. In Sec. II.A.6 we develop the model

3 pseudopotential that we will use for this study, and in Sec. II.A.7 we

add the coulomb and core repulsion terms to obtain the total ion-ion inter-

action, which will be used in the molecular dynamics calculations.

I n
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1. Conduction Electron Energy. The total Hamiltonian, H TOT, for

a system of N ions and N' electrons, neglecting external interactions,

i 

HTO " HI H e

with subscript e denoting electrons and subscript I denoting ions,

i where

-VI

TI +vI

i e J>i

T e + Ve VI-e

I ,k - 1 , ..N

i,j - ,''N'

ri  electron positions

R - ion positions

T - kinetic energy

m mass

VI - ion-ion potential interaction

i -electron-electron potential interaction

V e - ion-electron potential interaction

n The Schr6dinger equation is

i HTOT 'TOT ETOT TOT (2)

fii
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The solution of this equation is intractable, and we simplify it

with another well-known assumption--the adiabatic, or Born-Oppenheimer,

approximation. The essence of this approximation is that the electrons

readjust themselves so rapidly to a change in ion configuration that

the ions are regarded as fixed when solving for the electron energies.

This uncouples the electron part of the equation from the ion part.

1 Therefore, the total wave function is separable and is written as

I'FTOT w -~

II We may solve the electron problem for fixed ion positions to obtain

I eYe - ( (3)

l This substituted in Eq. (2) yields

T T I + V IT + Ee I e  ,

l e lIe e Ie

I where

2 2  2

TIIe  m Tie R

h2  ;2  I2  a'y aie I2Te\
e 2m _Z 1 2 1 2m1  zR I

The last two terms in this expression are neglected in the adiabatic

approximation because they contribute negligibly to the system en-

ergy.4 ,5  Thus, we can write

T ~(T 1 + V1 + E )!1

1 or.1I
l • lll 1II ll • l 11U
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(1l + Ee) IY I ET' T, (5)

and we see that the adiabatic approximation allows consideration of the

electron problem separately from the ion problem. The conduction elec-

3tron energy becomes an effective potential energy of the ions. We now

solve the electron problem,

I Here -Eese

e e e e

We assume the self-consistent field, or one-electron, approximation,

I where the potential (V(r)) that an electron moves in is calculated in a

self-consistent manner.1  We write

I H - T + V(r)e e

I
where V(r) is the self-consistent field and we write the Schr~dinger

5 equation for a single electron as:I

H ~ ~H- (Te + V()]J -Ee,
e T e +Vr e

3 Following the notation in Ref. 6, we use the index t to denote core

electron states and j to denote the state centered at ion position Rj.

4
We have

i [Te + V(0)]*t,j Et'jtj , (6)

where the tJ are the same as for the free atom, according to our first

assumption.

With the above equation established within the constraints of the

assumptions mentioned, we now restructure it in terms of the pseudo-

potential formulation. First we expand the electron wave functions

n 4

J,L _ _ _ _ __Rmim~mii'nmmaaie iDH
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in terms of a basis of functions that are constructed to be orthogonalI 1,6
to the core states. Following Harrison, we use the notation

I > E e , a normalized plane wave,

II 'J> ''t(r - , a normalized core functionI. 3 centered at ion position RP
and

<t,jIk> = If d r R )eikr

Then we write the basis functions, called orthogonalized plane waves, as

ioPWk - (l-P)i>

where P is the projection operator, which projects any function onto the

core states1 (note that <tj t',j'> = t,6 t ,),

P " t,j><t,j 1 (7)

I We expand the conduction electron wave function in terms of the orthog-

onalized plane waves to obtain 4

1- U - P) akIk> , (8)
,E k

kV

3 where aK are the expansion coefficients. If we substitute 4, in the

Schr~dinger equation, the solution could be attempted using the standard

3 orthogonalized plane wave method. We are attempting a different approach

and will restructure the equation. We introduce the pseudowavefunction,

ajk> (9)

so that

3-(l P)O (10)

j
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We note that is an expansion of free electron states and that - ,p

outside the cores because the projection operator is zero there.6  Sub-

stituting in the Schr~dinger equation yields

T e( - P)O + V(')(l - P)O - E( - P)pI e
and rearranging gives

Te + V()€ - [T + V(r)]P + EPO EO

so that

Te + WO - E(

where we have defined the operator,

3 W - V( ) - [Te + V(*)]P + EP E the pseudopotential operator.

i Using

Te +V(,)JP Et,jlt,j><tji

t'j

we have

W - V(r) +E (E - Et'j)It,J><tJ , (12)
I t,J

which is the pseudopotential equation.6

I As Harrison 1'6 notes, the pseudopotential has several interesting

properties. It is nonlocal in that it depends on all ion positions and

states. It is an operator and is not restricted to multiplying the

wave function. Its form is not unique and the pseudowavefunctions are

not unique. That is, an arbitrary number of core states can be added

to the pseudowavefunctions and they will still solve the SchrIdinger11_ _ _ __ _ _ _ _

, - -1
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equation. Also, Harrison shows that (E - E t J ) may be replaced by any

I function of the energies and the core states ff(E,t,j)] and the solution

will remain unchanged. There exist many valid forms that will yield

correct energies and wave functions.6

1 The pseudopotential property of importance here is that it can ber considered small. V(r) is negative, P is positive, and (E - E ) is
t'j

I positive so that the terms in Eq. (12) tend to cancel.6  Experimental

evidence corroborates that, in simple metals, the conduction electrons

I behave much like free electrons.

3 Given that W is small, we may use perturbation theory to solve for

the electron energies. We note here that, even though the W form is

arbitrary, if the problem were solved exactly (i.e. . all . in W),

the correct solution would always be obtained. However, using perturba-

tion theory, the W form will affect the result and the validity of the

i form used must be determined by the results obtained when applied to a

specific problem.6

3 Using perturbation theory, we calculate the electron energy in the

state k to the second order,
6

E +< <IWIk + ;>4k + ik>(3
Ek k + jj + Ek C (13

where

C 2k  2 (14)

are the free-electron kinetic energies. The prime on the summation in-

dicates that the q-O term is omitted from the sum. We also may calcu-

late the first-order pseudowavefunctions as

| "

~I . --- n,
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lit +F I 4 a qkIk+ q> ,(1.5)

q

where (

ak . = k + Z lW Z> 'q00(6

The q = 0 term, which does not imediately concern us, is determined in

Ref. 2 by normalization.

g Given an appropriate pseudopotential, we evaluate this expression

and sum over all occupied electron states to determine the electron

I energy.

E e "~nkEk (17)

tl k is occupied

i nk ) 0 k is not occupied

This particular result helps solve the ion motion problem (see

Eq. 5). In evaluating the conduction electron energy we must consider

the electron self-energy terms that are counted twice in Eq. (17). This

will be discussed appropriately in the ensuing sections.

2. Effective Ion-Ion Interaction. We evaluate now the matrix ele-

ments in the perturbation expansion for the electron energies (Eq. (13)].

In Eq. (12) and its discussion, the general expression for the pseudo-

potential was shown to be

W - V(r) +F f(E,t,j)lt,j><t,jl (18) j
t'j

V(r) contains the potential field due to the ions, VI(r), which may be* 1.
written as the sum of contributions from individual ions at positions

4.

...... .... ........ . . ... L .. . Ill i I n l- -llll



12

3 V(r) v .t (19)
i r

The ion screening, according to Harrison may be superimposed at the

ion sites and will be spherically symmetric. We have already written

im the core states as

Jt t,> = tr-

If we require that the function f(E,t,j) depends only on the core states

through the index t, we may separate the pseudopotential and write it

as a sum of contributions from individual ion sites as

m- w(r - r) . (20)j

m This assumption is essential to the pseudopotential matrix element cal-

culation.

Now we are able to factor the L atrix elements. Choosing W of Eq.

(20) as our pseudopotential allows factoring out the structure-dependent

term. We write

5 ( . iE .' 3<k + q e w( - r )e d r

* -iq" rj

Changing the summation and integration order and factoring out e

'q ~WIk> - -: f e-fec~ ( r ~ r ~)eikri d r

I
The integral is just the integration of an individual potential with

1 respect to the position of that particular ion. The sum contains the

information about the system structure, so we write

mi
"H I N I I I I' I I I I I I I£
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S(q) - structure factor e (21)
j

* and we define

ih+ qlwlk> - form factor - fe( +) 4 w( )e (22)

A where

- atomic volume P/N

So the pseudopotential matrix element becomes

<k + q wIk> - S(q)<k + q kwji> • (23)

This factoring is critical to the development of the pseudopotential

method. It allows simple solution of the seemingly intractable many-
1

body problem. The detailed ion positions enter only through the struc-

*ture factor S(q), and the ionic potential details enter only through the

form factor.

We are ready to sum electron energies over the available states to

determine the total electron energy. We rewrite Eq. (13) in terms of the

structure and form factors as

I .+" s*(Z)S(;)<IwIt + q>< + 'qlwlt>

Ek Ck + S(O)<tjlwlt> +EL - (24)K qk+~ (4

Note here that

* N
s(0) - 1 1 -

For free electrons in the ground state, the available energy states

are described by the Fermi sphere of radius,
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21 /3

k kf = 2 o )/3 , (25)

where kf is the Fermi wavenumber. With the pseudopotential present, the

energy surface is not spherical. However, when evaluating the energies

I to second order, we may neglect this higher order effect1'2 and sum

over the Fermi sphere. We divide by N to obtain the total electron

energy per ion, N-1 EeI
N 1.. 2% #
N-1-- Ek % f )d 3k ,(26)

Ik~k f (2w)

where we have used the density of states in wave-number space to convert

the sum to an integral, including a factor of 2 to account for spin

I states. 1

We now evaluate the contributions to Eq. (26) of the three terms in

Eq. (24). The first is

.12% fkf 3 --2 0 fk fh 2 k2  3
(27r) 3 f e d k " (270 3 2 d k

'I
3 12  3

3 Z k = Z T f (27)

which is the average kinetic energy of the electrons times the valence.

The second term is

I
fkfi 3 3

2Q f -f-jl k' 3k 2 ,f'< wl~
-k kdk -- d k

(27r) 30 (2 77) 3 o
"04 T 3<C1 lit Z wlit> , (28)

(27r)~ 3 3kf kw>-
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which is Z times the average valueof <k/w/k>. Both of these terms de-

pend on volume but not on the details of the ion positions, and they

represent the free-electron energy. Exchanging the order of the sm,

and integral, the third term is

!k
S (q)S( -0 f f 3 <twt +><-k+qlwI>3h 2

22) (k -2)
2m

I Here, we define the part of this expression that is a function of I'q

only as the energy wave-number characteristic F(q). It is determined

by w, which is spherically symmetric, and kf.

I F(q) -2% kf d3 k <kwjk + 'q4 + qlwik> (29)(27r)3f 0 2--, ( 2 -_ " + -20!M( k+q

The third term is called the band-structure energy, Ebs' and is written

Eb -E' S*(q)S(C)F(q) (30)

q

Note that F(q) depends on the volume but not on the detailed ion arrange-

ment, which is determined by the structure factor. This band structure -u

energy interests us when we calculate the effects of an ion position

change in a constant volume situation. It may be considered an effective

(indirect) interaction between ions.1  I
To show this in a more direct manner we restructure the expression

for E bI

F S*(q)S(q)F(q) 1~q ti Ni.i

q q i-l j-l

'I $ m mmm m m mm mm s m i m m ml
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I Note that

NE e-iq'(ri-rj i - N
i-j i-j-i

I so that

Ss am'4 F(q)(N + ' e -i q ( r i - ri))
q N \ i'j

where the prime on the summation indicates exclusion of the i = j term.

Therefore,

+4'F(q) (31)9.- VICr -r I'. 31
- i,j q

I The second term here is volume dependent and we define1P -).2 iq'rI V1 D(r) 'r F (q) e (32)

q4

We have written the structure-dependent terms as a summation over the

ions of an effective potential that is dependent only on the positions

of the ions through (r - r VN D is the effective interaction between

the ions for which we have been looking and which we now must evaluate.

Replacing the summation of Eq. (32) by an integral,

3 f d 3 q
q (27r)

we evaluate the angular parts of the integral over q space to obtain

1[
I i

I
I. - w., - -~--1... . .
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Q 0 sin gr 2 d
I q

This is a two-body, central force interaction between ions that may be

added to the direct ion-interaction terms when calculating the ion mo-

" I tion.

3. The Local Approximation. Anticipating that we will approxi-

mate the pseudopotential by a real model potential with adjustable

parameters, w(r), we make the "local approximation," which will simplify

the rest of the development. We assume that w is independent of q and

we neglect its nonlocal, operator character. Therefore. we can write

I< r + q"(-)j> f- w()e - i q 'r d 3 r - wq (34)

Additionally, the true wavefunction now equals the pseudowavefunction
• 2

to first order within a normalization constant and can be writtenI
Jk" k > + F a k + q>  "(35)k q

We now evaluate the energy wave-number characteristic in the local

approximation. w(q) is taken out of the integral of Eq. (29) so that

F(q) - 20 I1 12 2m f d3k1 ° ( 2 7r) 3  
;2q  k - k q 1

3 2

The integral is evaluated over the Fermi sphere asI
3 k + 2  k 2 f t 2 r 2I -k2 - 1 -- me (e(q) -1) ,(36)k + q me

"Ia
L m l i l l l
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where

(q) -1- 2 knI2l2(2 n [4 r
and

y _q _ (37)S2kf

I which yields1

4
F(q) - 2
F ( -w 2 W 2 q) -l]. (38)

e(q) is the static Hartree dielectric function for free electrons. It

has a logarithmic singularity at q - 2kf, which will affect signifi-

cantly the calculated interaction potential form.

Constructing the local pseudopotential by following the notations

I of Ref. 2, we write

W W + Ws x (39)

where WB is the "bare-ion" pseudopotential, the local potential by which I
the electrons interact with ions. W is the Hartree screening contribu-a

tion, which includes only the coulomb interactions with the other con-

duction electrons determined self-consistently. Wx contains contribu-

tions due to exchange and correlation. WB will be chosen later as an

appropriate model potential. W8 is determined accurately in the next

section. W must be approximated and is discussed in Sec. II.A.5.x

I I 4. Self-Consistent Screening. Within the adiabatic approximation,

we treat the conduction electrons as though responding in an

'I | • mIm
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electrostatic sense to the total potential W. The self-consistent

electron contribution, W., due to the resulting charge density, d(r) may

be calculated using Poisson's equation. (We are following Wallace's

method
2.)

I 2e(r) = -47re d(r) , (40)

i where

anI W (r) = eo(r)

d(r) electron density

I so that

iW s(r") - -4ne 2d(r)

We now expand W s(r) and d(r) in Fourier series

i 4( 2  e I qqW e -4Te2 d' r)

q q

2 iq-r
-- 47re IZd eII

The subscript q denotes the qth Fourier coefficient. Thus the expan-

sion coefficients for Ws and d are related through!5

Wsq/(4r)dq . (41)

To calculate the screening contribution we must calculate the charge

density, remembering that we are calculating the electron energies to

I V

I 5 eg hat l ibn ini uniin i
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second order and the wavefunction to first order in perturbation theory.

The charge density is given by

I d( ) = k~k (42)
k

where the sum is over all electron states and nk is the occupation number,

which is one when the state is occupied and zero when unoccupied.2  Using

I Eq. (35), which is the expression for IPk accurate to first order, we

calculate2 , keeping only first-order terms,

+ [ ' + aqk)eiqr (43)
& q k  k

We identify the Fourier coefficient d q, defined by

iq4r
d (r) d q

Iq
as

d d0  
-  k ' Q Z '-- &1  Z

k

I d =2S- l[nkaqk 0 (44)

q k

Substituting the value for aqk, yields

I. W MW 3ISI I q qn f 2 (5
q 3k C C22'3(45)0

k k -kq h k jk +q

where we have used the density in wave-number space with a factor of 2!p
for spin to convert the sum to an integral and the zero order electron

energy,

h 2  2
-k k 2 "(46)

I ,

Uj
V wa - ..-.. ..... .................... _ _ _ _ _ _ _
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We can calculate the Fermi energy Ef and Fermi wave number kf to

I second order due to the local pseudopotential perturbation. 2  This

exercise results in zero-order terms for Ef and kf, followed by second-

, order corrections. First-order corrections do not appear. This result

j allows us to take the integralf d3k over the zero-order Fermi sphere

and ensures that the results will still be good to first order. We

I evaluate the integral

d 3k

"k2 I + 2

over the Fermi sphere as we did in Sec. 1.A.3 and calculate 2

i dq -!-- (1 - E(q)] (47)

where e(q) is the static Hartree dielectric function given by Eq. (37).

I Substituting into Eq. (41), we find the result for the Fourier co-

efficients of W is

wsq w [1 - C(q)J (48)

Momentarily, we are neglecting Wx of Eq. (39), so

q Bq sq

and we see that

Wq - WBq/c(q) (49)

so that e(q) plays the role of the dielectric function.1

Now that we are including the coulomb energy of the conduction

electrons, we must reevaluate the expression for the structure-dependent

I' I _ _ _ _ _ ~ ni _ __are ~imli
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part of the total band structure energy, Eq. (30). In this equation we

have double-counted the electron self-energy Eee and must subtract it

to get the correct result. That is,

Ebs S*(q)S(q)F'(q) - E(50)
!N ee

q

The prime on F'(q) indicates evaluation of a more appropriate 
energy

wave-number characteristic, which can be used in Eq. (33) for VIND.

* The electrostatic electron self-energy per ion is given by

1 -fd 3r d(r) W (r) ,(51)

which (neglecting the q - 0 term) can be written
2 in terms of Fourier

coefficients as

I 1t

-E - -- id W . (52)
N ee 2N d q s-q

g

W " - rte2\ d (53)

5 so that1E 1 E .,q2 (54)

N ee 81Te 2 q sqs-q

From Eq. (20), we have

W(r) -I w(r - r )

and we can show that

W q S(q)w , (55)q q



I
23

where

W = f W(r) e d r (56)

qw wq()e' r d~ c3r (57)

and, as in Eq. (21),

S(q) Sq = r

which yields

1 - aO q q2Iwsq1 2  (58)
N ee 8Te q

We may substitute this into Eq. (50), using the relarions between Wq, Wsq ,

and W to arrive at
Bq

I %2
Eb -q SS q 1q 2 6() - 1

q q - 1l q (q)

The appropriate energy wave-number characteristic for use in Eq. (33)

to calculate VIND is, therefore,

I - _ 2___

F(q) 1 q e 2 E(q) - 1 (59)

82IBqI (q)I -4) 59

This expression accounts for the self-consistent screening of the elec-

tron gas, within the order of our perturbation calculation.

5. Exchange and Correlation. We include approximately the exchange

and correlation effects in the screening calculation. We follow the

4

--I, _ .... .. , .. -
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discussion in Ref. 2. The screening calculation outlined in the preced-

S I ing section yields the appropriate result with the inclusion of an addi-

tional interaction due to exchange and correlation, W x, so that

W q - WEq + Wsq + Wxq

We assume that there exists an average interaction I(q) within the elec-

I tron gas, 2

Wxq - I(q) d . (60)

3 Then, using Eq. (41),

W + W ,, + I(q)] d -i- [1 - f(q)] d , (61)

I where

2
f(q) - . l(q) , (62)

47re

I and we parallel the screening calculation algebra to obtain

Wq 1 + [(q)W- l][1 - f(q)] (63)

We recalculate the electron self-energy appropriately [see Eq. (51)] from

I
E ee -dq(W s-q + Wxq) (64)

and reevaluate the energy wave-number characteristic. This all follows

the development in the preceding section, with the additional (1 - f(q)]

term to keep track of. The result is

ii

I* ~ mmllem ma im
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, | ~ ~~-Qo 2 q 2 q

_____ 2 IWBqI 1 + Ic(q) - 11[l f(q)] (65)

Heine 7 discusses the formalism that we have just outlined and states

that the form of the equation may be justified, using exact many-body

theory.

To determine an appropriate form for f(q), we consider the calcula-

tion of the effective interaction between quasi-particles in an inter-

acting electron gas. As discussed in Ref. 8, in the random-phase ap-l
proximation and the high-density limit, a partial matrix element summa-

l tion of "ring" Feynman diagrams is appropriate. The effective inter-

action potential is calculated to be

V eff q - 2 'r 2 2 (66)

which in real space is a screened coulomb interaction in the Thomas-
Fermi approximation, 8

Vf ( )  2 -kr (67)
Vff(r) aI

Sha folw4ubr's tetetareplcsVe2 qb
V eff q q 2 + k2 + k 2  '(

where kf is some average of the Fermi vector. Hubbard also proposes

that the effect of exchange on the screening in the high-q limit should

be to cancel half the direct coulomb contribution to the screening. We

1 will write2 ' 7 ' I 0 '1 1

I
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V 1 I4 ire'69
eff q 2q 2 0 ___

2 2 22I where we have replaced kf + k s byf. This is in accord with Wallace.2

is an adjustable parameter that we will determine later to ensure that

1 I(q) has the correct q -*-0 limit. 2

The final form for f(q) to be used in Eq. (65) Is, therefore,

2

f(q) - 2 2 (70)

I We have specified the terms in the energy wave-number characteris-

tic (Eq. (65)], including exchange and correlation effects within our

level of approximation. Heine7 discusses the exchange and correlation

I effects and states that the uncertainties arising from the approxima-

tions used in determining Eq. (70) are greater than the uncertainties in

the pseudopotential. We continue by choosing an appropriate local

bare-ion potential W to complete our determination of F(q) and V 14D .

6. A Model Pseudopotential. We approximate the local bare-ion

I pseudopotential, wB(r), by a simple model which behaves like the poten-
2

tials in the real metal. wB (r) is composed of two contributions,! -
w(r) - wz(r) + wc(r) (71)

I wz(r) is due to the coulomb attraction of the ion and has the form

z r

with Fourier transform (i.e., the w matrix element)
zq

J'IN
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4e 2
I ~w -- •(2

zq (72)

w (r) is a localized potential confined to the core region. Itc

approximates the repulsion due to the core electrons and tends to cancel

i the coulomb part within the core. An appropriate choice for w c(r) is of

the form of the s-state core functions,I
w c r) - e- Sr .

The Fourier transform of this isI ___ s_______ l__ .

[ cq % + q2 )2]

We introduce the arbitrary constants and p such that

~cq + q2 ) 2](3

3 The form that we will use for the matrix element of the bare ion po-

tential in Eq. (65) is, therefore,

i r -47rze 2 + " (74)

I7. Total Ion-Ion Interaction. For a molecular dynamics calcula-

tion we are interested in the total ion-ion interaction potential. We
Ihave just calculated the effective interaction V IND due to the presence

of the nearly free electron gas in a simple metal. To this we must add

the coulomb replusion between the ions,5

'I
'I

* -- -III II 1I IAI
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z e (75)
rr

and the exchange repulsion between two ion cores,

Vr

B-yr (76)

I which is a Born-Mayer repulsive central potential.2  a. and TB are

empirically determined constants.

Therefore, we may summarize the results of this development by

writing down the ion-ion interaction potential, which will be used in our

molecular dynamics calculations:

I2 2 -yB r

O(r) - + ate + V 1 (r) , (77)rIN
where

V (r) (q)5 inSr .2 , (78)

IN 2 0  qr

.iloq I [ ( ) - 1

F(q) - 1 [ () -1 (79)

87re -

2 / 2
c(q)- - me n - 1) , (80)

f(q) - q (81)
2(q2 + &k 2)

3 and
-Bq Q: 2 + (qo 82)

I q- o q& (l + q2 2)'J

- --
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The determination of the constants aB' YB' ' 8, and p will be discussed

I in Sec. III.

B. Molecular Dynamics

i We have calculated an effective interaction potential for the ions

in a simple metal [Eq. (77)]. We use this as the potential of inter-

action between pairs of classical particles and will solve for the ion

i motion in the metal using the molecular dynamics technique. In this

section we present the equations that are solved by high-speed com-

Iputers to yield ion positions and velocities. We derive the conserva-

tion of energy and momentum in a molecular dynamics system, describe sys-

tem size and boundary effects, and discuss the methods of calculating

thermodynamic properties from the molecular dynamics results.

1. Central Difference Equations. For a three-dimensional array

of N identical particles, we solve the set of classical Newtonian equa-

tions,

Ir mi(t) - iCt) ,(3

where

i - particle number - 1,29...,N ,

ri - particle position (xi,Yi,z1 ) ,

m - particle mass, and

- force on the ith particle.

The dots denote time differentiation. The force on the ith particle is

determined generally by the positions of the other particles, and thus

the equations are coupled. We develop the difference equations used in

the molecular dynamics program to solve this system of equations. Con-

sider, for simplicity, only the x-direction. The y- and z-direction

equations are identical.
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In the x-direction

i(t) F xi(t) (84)

i Performing a Taylor series expansion on At, the new position at t + At

is

x(t + At) - xit) + At i(t) + _(At)2 xt) + , (85)

and similarly,

xi(t - At) - xit) - At 1iCt) + 2 + (86)

i Adding these equations yields

xi(t + At) - -Xl(t - At) + 2xi(t) + (At) 2 i(t) + . (87)

I Subtracting gives

I i(t + At) - x i(t - At)

i(t) 2At (88)

i These equations constitute a straightforward central difference

l scheme that is appropriate to the solution of the ith particle position

and velocity and is accurate to the order of (At)3

We work easily in terms of displacements defined at the time inter-

val midpoints as

It
xi(t + x(t + At) - x Ct) (89)

l With this definition, and expanding xi(t + At/2) in a Taylor series

about At/2, the following difference equations are calculated as

I
.u.9r-
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I
S6 ift + (At/2)]

xi(t + " At (92)

where we have used i (t) - F xi(t)/m.

I These are the equations used in the molecular dynamics program to

solve the coupled system of differential equations. The force of the

ith particle is calculated by assuming additive interactions between

j pairs between the ith particle and its neighbors.

SF xi(t) Fxi(t) (93)

j-l

I The prime on the summation indicates that the J-i term is omitted.

Fxi j is the x-component of the force on the ith particle due to the JIth

particle and

F -Fxi (94)

by Newton's third law. For this study we calculate the force by taking

3 the negative gradient of the ion-ion interaction potential determined

through pseudopotential theory [Eq. (77)].

The computer program that solves the difference equations is easily

understood.* After determining the initial positions and velocities of

the particles (see Sec. IV), all the particle forces are calculated

I *The molecular dynamics computer program used in this study was developed
by B. L. Holian and G. K. Straub of the Los Alamos National Laboratory.

j I
,-r"l .. ,,. D, ., ... P "-" g , . ,. , : ,G .. : lA
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i based on the current positions. With Fxi(t) thus calculated,

Axi(t + At/2), xi(t + At), and i(t + At/2) are evaluated readily by

Eqs. 90-92. With xi(t + At) known, the time step is advanced and

Fxi (t + At) is calculated. In this manner, the trajectories of all N-

particles are calculated exactly at any time [within (At) 3]. The par-

I ticle positions and velocities may be evaluated to obtain a time history

of the system being studied.

2. Conservation of Momentum and Energy. The difference equations

just described can be shown to explicitly conserve momentum and energy.*

In a system of N identical particles interacting by way of a conserva-

I tie, additive force between pairs, where

3Wx
F _W - i -- 1) (5
Fxi~t mi~t ax xi  (

and is the additive potential between pairs, we can demonstrate con-

servation of momentum, P, by showing that

Pt+At -P(t - At

or

N
Emx(ti m t -- At A (97)

I
Using the difference equations (Eqs. (90)-(92)] we evaluateI
N N Fi 2

i-i i-i i-i

*Based on a calculation by Brad Lee Holian of the Los Alamos National
I Laboratory.

_ _____ __ ..
Ill l -B I IlI I -i i I BIB I I____ __ _
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I Also,

N N N N N

I i-l i-l J-1 i-i J>l

But, by Newton's third law

i xij " xji

so that this sum is zero and we have shown in Eq. (97) that

I N N
~mii(t + )m m&i(t At)L

iwhich proves that momentum is conserved to within the accuracy of the

difference equations.

Similarly, we calculate the total energy to demonstrate conserva-

tion of energy.I
E - total energy - potential (PE) + kinetic (KE) energy.

We calculate the change in potential energy,

IAPE- PE( At A- PE(t- at (98)

I and compare it with the change in kinetic energy,

AKE- KE(t +A)t KE(t--) (99)

I The change in potential energy isI
'I
I
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NI

I0 is the potential energy of the ith particle defined as
N

YO) "E'ij(t) -

and

Ii - 0( ) -

IExpanding in Taylor series yields
Nt

IAPE -E {r0pt) A t t)m + 1i WA 3 (t

2±~t 2it +~ 2_O 2 (t) +)),|- bP1(t), - } $pt + * (i- (t) +

N

-: Isitt + O(At) 3

Jul

The potential is related to the force by

cit)At dt At dx(t) dt At -Fi(t)k(t) At , (100)

so that

N
APE - F - t) i(t) At + o(At)3  (101) f

The change in kinetic energy is

AK E a -I F-(t At 2
2K [ki(t + 2) 1

i1l

' 1
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We evaluate these terms by noting that

(t t 2  ( t 2  ( t A i t

[tI (t + ) ) i(t - )] (12)

and by expanding using the Taylor series

i . t At + . At ..t 1 lAt 2 ..
i(t + L) - *i(t) + L xi(t) + (T xit) + o(At)

At At At 2 ... 3x(t - A-) = i ( t ) - LT R ( t ) + l(-) Mit + o(At)

i By adding and subtracting the second of these equations from the first,

we get the needed factors in Eq. (102). By using

Fi(t)

and some algebra, we arrive at

N
AKE [F *t)Mi(t) + O(At)3] (103)

and we see, from Eqs. 101 and 103, that

AE - AKE + APE - 0 + O(At) 3  (104)

Thus we have shown explicitly that both momentum and energy are con-

I served by the difference equations.

3. Boundary Conditions and System Size. We now set up the system

of N interacting particles. We perform our molecular dynamics calcula-

tion on this system, and from the resulting information, we infer the

macroscopic properties of sodium. The system is obviously limited to

I
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having N much less than a macroscopic (10 24 nme.W utmnmz

the effects of finite system size by choosing appropriate boundary con-

ditions, and we must recognize the N-dependence of our results.

1 To minimize the effects of finite system size, we choose periodic

boundary conditions whereby the N-particle system is repeated periodic-

ally throughout space and thus may be considered an infinite system with

j the imposed periodicity. Figure 1 is a schematic of an N-3 system in

two dimensions and its nearest repeatedi systems. 12  L is the length of

I the square system box and RMAX is the range of the potential. We

use the minimum image convention, which means that a particle only

I interacts with the image of a neighbor that is nearest to it. That is, in

j Fig. 1, particle two will only interact with the image of particle three

in the box to its right and no other "particle threes." This constrains

us to keep the system length, L, in a given direction greater than twice

the potential range so that not only will a particle never interact with

1 its own image but it will not interact with more than one of its neigh-

bor's images. The method for determining our particular system dimen-

sions and the potential range is discussed in Sec. IV.

The N dependence of calculated system properties has only been

I. determined for some simple cases. (See discussions in Refs. 12, 13,

* and 14.) Based on such studies, we expect a 1/N dependence. However,

12
a generalized solution method does not exist. Therefore, we must in-

cldude sufficient particles in the system, and we check to see that the

calculated results are not N dependent. If there is an N dependence

we may be able to evaluate how to extrapolate our results to the macro-

scopic N limit. In our equilibrium property studies, we are not overly

concerned because the N dependence is generally small for systems with
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A two-dimensional system of N-3 particles in
an L x L box with periodic boundary conditions.

RMAX is the range of the potential. Note that

as partilcl moves out of the system it re-

l appears by way of its periodic image.
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In > 100 and we will be deling with N > 600, owing to the lon rane of

the pseudopotential. If we study nonequilibrium properties or effects

relating to large numbers of particles, such as coexistence of phases,

then the N dependence becomes more critical. We discuss N dependence

effects as they affect our calculations in Sec. IV.

U 4. Thermodynamic Properties

When it is appropriate to calculate macroscopic equilibrium prop-

erties from an N-particle molecular dynamics system, we proceed by tak-

i 1 ing averages over time. In a molecular dynamics calculation, the

number N of particles, volume Q of the system, and total energy E remain

constant. With these constraints, the system forms a microcanonical en-

3semble. However, there is the additional constraint of constant linear

momentum (M), so we would describe the system as having N, V, E, and M

constant. 15 This must be taken into account when comparing molecular

dynamics time averages with ensemble averages obtained using statistical

Imechanics or other calculational techniques such as Monte Carlo (see

Refs. 12, 13, and 15 for discussion). We are not concerned immediately

with such comparisons. The essential assumption regarding the appropri-

ateness of the averages is that the system is ergodic. That is, all

states of the system in phase space are mutually accessible with equal

probability, so that all time histories of the same system have equiva-

lent statistical averages.1 6 This assumption has never been proved,

but experience shows it to be valid. 12 We assume that our time averages

I yield the appropriate statistical averages of the system's equilibrium

properties.

We will now determine various properties of our system at a partic-1
ular time, with the understanding that we will sample these properties

many times during a molecular dynamics calculation and average them.

It
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We calculate the average kinetic energy per particle of the system

of N particles as

N
E 2 m + 2 zi) (105)

N - 1

n The average potential energy per particle is

N N

I 
where 

i I J-1

r -i = (xiYZi) "

and 0(r) is the potential that describes the interaction between

particles. The factor of 1/2 is included to correct for double-summing

I of the potential energies.

our system at equilibrium, obeying the laws of classical dynamics,

Iwill satisfy the Maxwell-Boltzmann law. The law states that the average

of a property (P, for example) can be obtained byI
f N f e-E/kT P dql" •dp 3  "

N fo" "S e-E/kT dq"• dqI  "P3N

where E is the system energy, kT is Boltzmann's constant times the tem-

perature, and the integration is over all points in phase space with

I positional coordinates qi and momentum coordinates pi 
17

Using this law, we may calculate the distribution function for

I each velocity component as

I4
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dN. .2)

IN ai27 2T2 2

I IQS) , (107)

and similarly for y and z. This is the Maxwell or normal distribu-

tion. Then we calculate the average kinetic energy per particle as

Il. 2 3

-v-(2 + , + ) kT (108)

We are assuming that our system has no net motion, i.e. x - y - z = 0.

If there were net motion, we would calculate only the fluctuations

about this average motion and replace x by (i - I) . This connects

I the kinetic energy per particle calculated using molecular dynamics and

the thermodynamic temperature of the system.

NKE L NE 1m(xi + Y2 + j2) = 2kT .(109)

I i-1

We also accept this expression as the definition of kinetic temperature

to be used even when the system is not in equilibrium.1 8

Note that the N-particle molecular dynamic system may not be in

equilibrium. Also, the velocity distribution may not be normal. We may

investigate this, as far as the temperature and kinetic energy are con-

cerned, by seeing if the kinetic temperature is isotropic. That is, IUI
we may for convenience define

1-kT 1. - -mx j' 2 (110)

x- N -2 . ...1_ _ ____
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Iand, similarly, T yand T . We require that T x T - TZ for the system

1 to be in equilibrium. To investigate if the velocity distribution is
normal, we may calculate the kurtosis (which measures the "degree of

Ipeaking") of the distribution in the molecular dynamics calculation. 19

We calculate the kinetic temperatures and the kurtosis for example

* I calculations and discuss their implications in Sec. MV

I The volume of a molecular dynamics calculation as we apply it is

a constant and an input parameter. A given calculation will yield the

potential and kinetic energies and the calculated temperature. For

each calculation we have an equation-of-state point for the molecular

dynamics system consisting of a total internal energy (kinetic plus

potential) at a volume and temperature.
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1 III. THE ION-ION INTERACTION POTENTIAL FOR SODIUM

In this section we discuss how the necessary parameters are deter-

mined for the calculation of the ion-ion interaction potential in Eq.

I (77). We use these parameters to calculate the functions in Eqs. (78) to

(82) which specify the potential. Finally, we calculate the interaction

I potential and discuss how it is tabulated for use by the molecular dy-

namics program.

A. Determination of the Parameters

1. Determination of E. The constant & in the expression for the

function f(q) [Eq. (81)1, which corrects the dielectric function to in-

I clude exchange and correlation effects, may be determined analytically.

In the long wavelength (q - 0, or macroscopic) limit, the static di-

electric constant is related to the electron gas compressibility, K,

i as

Ii 4irN 2 e 2 K , q - 0 limit (111)
q2

I where the prime distinguishes this dielectric constant from the Hartree

i dielectric constant of the noninteracting electron gas, E(q), defined

by Eq. (80).

Note that

( E,( g) - l)O 0

(E'(q) - 1) K (112)

where the superscript zero indicates the values appropriate to a non-

interacting electron gas. With some algebra and the formulas relating

i f(q) and the dielectric constants [for example, Eq. (63)], this relation

becomes

t , __ _ _ __ _ _ _

L
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0: 0l--' 1- f(q)[e'(q) - 1] - 1 - f(q)[e(q) - 1) (113)

which is valid in the long wavelength 
limit.

From the expression for c(q), Eq. (80), we find2

* 2
i 4mekf me2

zim [e(q) -1]- (114)
q-0 7h 2q 3 2kf

so that

-, Jlin [1 - f~q)Ce:(q) - 1)] :4

IC

i~ Thi isth rlo thadeterine 1) .

2

i 1/ 2 o me kf me 2I \2(q tke) (fls 3rr h k f

i- 2 " *2 • (115) .

im

Sor
0 2
S_ 1- 2 (116)

C k f Trh2

IThis is the relation that determines &.I

We calculate 'C and K 0 from the relationj

I 2

1K 11O2 '

where E 0 is the electron gas ground-state energy. We write the energies

in terms of r. which is defined as the radius of the sphere whose

volume is the average conduction electron volume, so that

-r (118)
3 z
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I To calculate the compressibilities, we use the results from Sec. V

g for the ground-state energies of the noninteracting and interacting

electron gas, E0 and E0 9 respectively.0

I 0 32.21 n )E0 r 2 K

With the help of the relations
E1/2 2 / 2 0\

02 9 2r -J
r 0 \

I 4 3 '31T 2 z _

0 " rr ,ai

kfI
! 0 me

we may calculate o/c and use Eq. (116) to arrive at

I - 0.916/(0.458 + 0.012 r ) .(119)

IWith the value r - 3.939 a corresponding to an atomic volume of

256 for sodium, we have

2 1.81 . (120)

We notice here that is volume-dependent and is treated as such in ourI calculations.

i 2. Determination of 7B' B' 8, and p. The remaining parameters

I it, and v hae een determined by fitting to available data.I

I
5- a 3,or s w have
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i We have chosen the value for in the Born-Mayer repulsive poten-

i tial, Eq. (76), to have the value determined by simultaneously fitting

calculated lattice energies to equation-of-state data for the family of

alkali halide salts. 20  The value is

1 10-8
- 0.339 x10 cm7B

Iso that

YB = 1.56 a0
1  (121)

Wallace 21 determined the values of aB' , and p by fitting the cal-

culated expressions for the total adiabatic potential and its volume

derivative to measurements of the equation-of-state properties of sodium.

IThe data included were the binding energy, the ionization energy, and
the bulk modulus at zero temperature and pressure. The requirement that

the pressure be zero at zero temperature was also used. He found that

these data could be fit with some arbitrariness remaining. This arbi-

trariness was removed by requiring that the calculated average of the

i phonon frequencies squared (< 2> as calculated by lattice dynamics)

also be fit. The resulting parameters are

ia aB 10. 5 ,

I- 37. Ry a0 , and

p 0.50 a0

We discuss in detail the total system energy calculation and equa-

tion-of-state value determination in Sec. V.

I

-!
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With these parameters determined, we have completely specified the

effective ion-ion interaction potential of Eq. (77). We now proceed to

calculate this potential and apply it to the molecular dynamics calcula-

5 tions.

B. Calculation of the Potential

We now calculate the ion-ion interaction potential for sodium, using

Eqs. (77)-(82) and the parameter values determined in the previous sec-

tion. For these calculations, which illustrate the factors involved in

5 the ion-ion interaction, we use the observed zero temperature and pres-

sure atomic volume for sodium of

0
=256 a0

which yields a Fermi wave vector of

(72 z1/3
kf - 0.4872

I. E(q). The static Hartree dielectric function is calculated us-
ing Eq. (80) and the result is the solid line shown in Fig. 2. It acts

as the dielectric function for an interacting electron gas without tak-

ing exchange and correlation into effect. It has large and small q

5limits given by 2
I 16 me kI2 3

l3m (q) -1 + 1 (123)q 3T 2 q 4

|and _ _

an Am 4 m e k f / mI (q) -. (124)
*O Trh2q 2 "kf
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Fig. 2.
The solid line is the static Hartree dielectric function, C(q),
as given by Eq. (80). The dashed line is the modified dielectric

i function as given in the discussion following Eq. (125).
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c(q) has a logarithmic infinity in its second derivative at q - 2 kf,

which will have an important effect on the interaction potential, as

will be discussed later.

2. f(q). The interpolation formula f(q), which corrects the

electron screening because of exchange and correlation effect, is given

by Eq. (81) and is shown in Fig. 3. It varies smoothly from the expected

f(O) - 0 long-range limit to the f(-) - 1/2 limit, where the screening

effect is reduced by a factor of 2 because only electrons of anti-

parallel spin should interact in this limit with exchange taken into
11

account. With f(q) included, the relation between the total potential

W and the bare-ion potential WB Fourier coefficients is

Wq -W~q/[I + (c(q) - 1)(1 - f(q)] , (125)

so that the modified dielectric function is 1 + [e(q) - i][1 - f(q)].

This function is shown as the dashed line in Fig. 2.

I 3. v and w . The local bare-ion pseudQpotential matrix element

wBq, discussed in Sec. I and given by Eq. (82) is the solid line in Fig.

4. The screened matrix element given by Eq. (125) is the dashed line in

the same figure.

Note here that the screening effect is the cutting off of the long-

range (small q) part of the potential, as expected. We also note thatI in the small q-limit

him -2 2) -2 FI

q-0 Wq - \2 kf - _.f -0.158 . (126)I
where we have used the 1i f(q) - 0 and the small q-limit for the

Hartree dielectric function given by Eq. 124.

I
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I~ q(a0
1 )I0

I Fig. 3.
The interpolation formula for the approximate correction to the

electron screening due to exchange and correlation effects, f(q),

as given by Eq. (81).

i

I
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Fig. 4.
The solid line is the local bare-ion pseudopotential matrix ele-
ment, WB, given by Eq. (82). The dashed line is the screened
matrix element given by Eq. (125).I
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I 4. F(g). The energy wave-number characteristic given by Eq. (79)

is calculated easily using the results above, and it is plotted as a

function of q in Fig. 5. F(q) has more detail than this scale

I graph shows, such as a second negative "hump" at about q , 5a0 with a

magnitude of 1.0 x 10 Ry.

I In the large q-limit, F(q) goes to zero as

I~ 23
64 z kf I

lir F(q) = f 1 (127)q-* S10  q

and in the small q-limit, F(q) goes to negative infinity as

* ilin-2rz e2

lira F(q) - -2 0q2  
(128)q-*O 20q2

5. VlN(r). We can evaluate the effective ion-ion interaction

due to the presence of the electrons in the ion-electron system. We

must evaluate the integral in Eq. (78), which is

Uf sin gr2(19
V - F(q) qI r 2 qr qq (129)

It is instructive to look at plots of the argument of this integral;

i.e.,

ARG - F(q) s q (130)
qr (

i which are plotted for different r values in Fig. 6. This figure shows !

that the absolute value of the integral will decrease with increasing

r because of the modulation of the sin (qr) term.
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Fig. 5.'I The energy vavenumber characteristic, F(q), as given by Eq. (79).
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,1Arguments of the effective ion- ion interaction integral as given
by Eq. (130) plotted for different r values.
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The integral of this argument is evaluated numerically with the

help of a Simpson's rule integration subroutine and the following re-

a lationship,

fU b d +'®i

ARG dq - ARG dq + (lir ARG) dq , (131)f f0 b q

where the second integral is an analytical integral of the large q-limit

of the argument.

Using the large q-limit for F(q) given by Eq. (127), we must evaluate

- 2 z~~ 3 3 __S(12 ARG) dq - 64 f /1 r sin d , (132)

where we have changed variables in the integral from qr to x. This

integral may be evaluated using standard integration formulas and the

rational approximations to the sine integral of the form

Ibr
given by Ref. 22.

In practice, the first integral in Eq. (131) is broken into NINT

intervals, starting at A, with each B wide to ensure that the Simpson's

rule integration is able to converge efficiently. The integrator uses

a convergence criterion parameter, EPS, to determine the accuracy of

each integration. The actual integration procedure is illustrated by

I A+B A+2B A+(NINT)B
+ (large q limit) . (133)

f A A+(NINT-1)B 4A+(NINT)B

pp IIl ll
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l Breaking up the interval allows investigation and correction for in-

j accuracies that may arise when Simpson's rule is used to evaluate

integrals that have positive and negative areas canceling. We performed r
I a convergence study of the VIND(r) integral and determined that the

values

NINT 20

B 1 (134)

-10  and

EPS - 1 x 10
-6

-5
yielded results accurate to about 10 , relative to the integral values

we obtained for the well-converged solution. This value set was chosen

to evaluate the integrals for use in the rest of the study. The func-

tion VIND(r) calculated in this manner is shown in Fig. 7 and as the

I solid line in Fig. 8.

We now investigate the VIND(r) behavior in the large r-limit.*

To do this we expand Eq. (79) for F(q) by letting

I (q) -1 _

1 + [e(q) - 1][1- f(q)] - 1- f(q)x (135)

where

x - (q)

We note from the values of f(q) and e(q) that 0 < f(q) (1/2 and 0 <

x < 1, so that [f(q)x]2 < 1. We, therefore, may expand Eq. (135) as

Based on a calculation by Galen K. Straub, Los Alamos National
Laboratory.

I £
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Fig. 7.
The effective ion-ion interaction, as given by Eq. (78).
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0.0 4.0 8.0 12.0 16.0 20.0 24.0 28.0

r (os)

Fig. 8.I Plots of the effective ion-ion interaction, V-N(r) (solid line); rthe coulomb term, z2e2/r (dashed line); the Born-Mayer term, oBe -YB

(dotted line); and their sum, the total ion-ion interaction, O(r)
(chain-dashed line) as given by Eq. (77).
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x x[1 + f(q)x + f2(q)x2 + f3(q)x3 +

1 [2f(q)x 2 1

1 + f(q)[1 +f (q)[1 _ + "

c(q) q)) +(136)

We use this expansion and evaluate the contribution of each term

I to VIND(r) by evaluating the integral in Eq. (78). The contribution of

the first term in Eq. (136) to V1 (r) isU
2 2
z z e-r/- O (137)

47rp (rr

I The second term in the expansion Eq. 136 yields the following

integral.

I1 'r1- ---0q 2 2( ) sin qr q2 dq (138)

7r 0 k8lTe2 / w~ qr(1 )

i Now the infinite discontinuity effect in the static Hartree dielectric

function, e(q), becomes apparent. Harrison6 evaluates this expression

by integrating by parts. He obtains vanishing contributions in the

large r-llmit for all terms except those containing the divergent second

derivative of e(q). These yield a nonvanishing integral. The most

* 3
singular term goes as [cos (2kfr)]/r , which is the leading term in the

large r limit.

Using this result and Eq. (137), we see that the leading terms in

the large r-limit of V IND (r) are

lir V r 22 cos 2kfr

+ V IND r + 3  (139)
r r

LJ

I n N ~ N ~ n l m use • e i H 17
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I The first term corresponds to the coulomb contribution of the bare

3 ion potential and cancels the direct coulomb ion-ion interaction at

large r. The second term represents the Friedel oscillations typical

3 of screening caused by electrons in a system characterized by a sharp

cutoff of momentum at the Fermi surface.1'5'6 This term gives rise to

the long-range oscillatory behavior of the ion-ion interaction.

6. (r). We calculate the total effective ion-ion interaction

1 given by Eq. (77) as

2e2 -YBr

O-(r) + ctse - (r) (140)
r IND

The coulomb and Born-Mayer repulsive terms are plotted as the dashed

I and dotted lines, respectively, in Fig. 8. V (r) and O(r) are also

plotted in this figure. The nature of (r) is obscure in this figure,

other than the cancellation of the coulomb repulsion by the leading i/r

term in the large r expansion of VIND(r) given by Eq. (139).

I The nature of O(r) is apparent from the plot in Fig. 9. We notice

I the dominant repulsion for r < "'6,5 a0 , the minimum in the potential at

r 9 8ao, and the long-range oscillatory behavior as discussed above.

For convenience, we include here a plot of the force between pairs,

F(r) - ~()(141)|;r
I in Fig. 10. The force is the value used directly in the molecular dy-

namics calculations to determine ion motion. Values for both the po-

3 tential and force as a function of interatomic distance, r, are tabu-

lated in Appendix A.

I These, then, are the effective ion-ion interaction potential and

force that will be used in our molecular dynmics calculations. We

, I
i _ m mmm m3
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Fig. 9.

The total effective ion-ion interaction potential, (r), as given
by Eq. (77). The dashed line is O(r) multiplied by 100.
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I Fig. 10.

The effective pairwise force, F(r), as given by Eq. (141). The

i dashed curve is F(r) multiplied by 100.
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notice that they are dependent on the atomic volume 00, through the

Fermi wavenumber kf9 so that new functions are required at each sodium

density calculated. Because the calculation of the potential and force

functions is lengthy, we will tabulate the results and interpolate from

I the tables during a molecular dynamics calculation. This procedure is

discussed in the next section.

K IC. Tabulation of the Potential and Force

Because each molecular dynamics calculation with the number of

I particles that we are considering is inherently costly, we want to make

the potential and force information available in a manner which mini-

mizes the number of operations required by the molecular dynamics pro-

gram. To do this we tabulate the potential and force values and then

look up the values as needed.

There is a tradeoff between different interpolation schemes. Some

schemes are accurate for a relatively small number of points in the

I table, yet require many operations to obtain a value. The simplest of

3 schemes, linear interpolation, requires a high point density but few

calculations. Because, in a molecular dynamics program, we must perform

3 many table lookups, and storage on the computer we are using (CDC 7600)

is not a serious constraint, we have decided to use a linear interpola-

I tion scheme with enough points in the tables to ensure a negligible

loss of accuracy owing to the table lookup.

The potential and force functions are dependent both on interatomic

distance, R, and atomic volume, V. (For this discussion, we are usingIA
notation convenient to the notation used in the computer program.)

ITherefore, we must set up our tables and interpolate in both the R and
V dimensions.
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To illustrate table setup and the interpolation scheme, we will

outline the procedure for determining the potential, POT, and force,

F, once V and R have been specified.

The volume table is set up with a minimum volume VMIN, a maximum

volume VMAX, and a certain number of table values NV (see Fig. 11).

l The constant interval between values is given by

U
DELV VMAX - VMIN (142)

NV- 1

I The radius table is set up in a similar manner with RMIN, RMAX, NR, and

DELR values specified.

V(IV) is the volume at the IVth position in the volume table,

R(IR) is the radius at the IRth position in the volume table, and

POT(IR,IV) is the potential at IR and IV, which are calculated from

I pseudopotential theory as discussed in Sec. III.B rand similarly for

F(IR,IV)].

Now, given an arbitrary R and V within the table limits, we per-

form an integer divide (i.e., truncate the division to an integer) to

get

IV - V - VMIN + 1 (143)
DELV

so that we know that V is positioned between V(IV) and V(IV + 1) in the

volume table.

fnAt each of these volumes we find IR and IRl + l and interpolate to

f
POT1 - POT at IV and R

I POT2 - POT at IV + I and R

lI
l1
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I POT (NV)

I! i

SPOT (Iv)--

I D I

II I 'II
'! :

u It;''
V(I) V V(2) V(3) 0 . V(NV)

VMIN VMAX

Fig. VOLUME

Fig. Ii.:

A schematic showing the arrangement of the volume-dependent table.
NV is the number of points in the table.
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I We may then interpolate on the volume to arrive at the value for the

potential at V and R given by

POT = POTI + V - V(1V) (POT2 - POTI) , (144)

and similarly for the force*I _

F -Fl V - VCIV) (F2 - Fl) (145)
DELV

We determined the appropriate density of points for these tables.

Calculations of the potential and force at different volumes and con-

stant radius showed an almost linear relationship, and five tables were

I adequate to cover a range from 10% compression to 10% expansion from

normal density. For the R tables, a value of NR - 2000 was chosen, which

yields interpolated values that are precise to about 10- , relative to

I calculated values. The RMIN and RMAX values include the expected inter-

atomic distances.

jThe following values were chosen for the table setup.

I RMIN - 4.0 a0

RMAX - 30.0 a0

nNR - 2000

VMIN = 230.01 a3 (10% compression) (146)I 3
VMAX - 281.12 a0 (10% expansion)

~0

Curves obtained from the tables for the 10% compression and ex-

pansion volumes are shown in Fig. 12 to illustrate the density depend-

ence of the potential.

I

U- H ' i I I i I
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l Fig. 12.

The total effective ion-ion interaction potential for the 10% com-
pression (S0 - 230 ag) and 10% expansion (S20 280 a3) conditions.
The oscillating curves at large r have been multiplieg by 100.
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IV. SETUP OF THE MOLECULAR DYNAMICS CALCULATIONS

We have described the molecular dynamics calculations and the

pseudopotential method by which we calculate the effective pair inter-

I action between ions. A given molecular dynamics calculation proceeds

as described in Sec. II.B, with the forces needed in Eq. (90) read as re-

quired from the tables set up as described in Sec. III.C. In this sec-

I tion we discuss the setup of our particular calculations on sodium,

and describe the units, initial conditions, and crystal configurations

for the hexagonal close-packed (hcp) and body-centered (bcc) phases of

sodium.

A. Units

I We specify the energy (EO), distance (XO), and mass (MO) units for

these calculations as

EO - 1 Rydberg = Ry = 13.60559 eV = 2.17971 x 10- erg e2 /2a0  ,

X0 - 1 Bohr radius a0 = 0.529167x10-8 cm- 0.529167A ft 2/me2 , (147)

MO - 1 molecular weight of sodium - 22.9898 g/mole - 3.81731x 10- 23 g -

Note that in these units, the mass of a sodium ion is unity. From these

specified units we derive the time and velocity units as

x0() 0-15

to = XO =7.00281 x 10 s

and (148)

v0 =- 0.755650 cm/js

Pressure is given in Ry/a 0 . We will use kelvins (K) as our temperature

unit with Boltzmann's constant given by
6 x

k = 6.33359 x 10- Ry/K':

: I I
S I mA~l I . l II~
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B. Initial Conditions

3 To solve the difference equations described in Sec. II.B, we must

supply initial positions and velocities for the particles in the system,

such that both the expected crystal configuration and approximate tern-

perature are predetermined. In the next section we discuss the deter-

I mination of the initial particle velocities. In the following two

I sections we describe the initial positions for hcp and bcc crystals of

sodium.

I 1. Particle Velocities. We determine the initial velocities to

satisfy the requirements that the center of mass velocity is zero and

I that the average of the velocities squared will give twice the tempera-

ture dIeiled.We say twice here because, with the particles placed at

their lattice positions, all initial energy will be kinetic and we ex-

3pect abu afto be partitioned to potential energy as the calcula-

tion proceeds and equilibrium is attained.

The computer program selects initial velocities by using a random

number generator to choose the initial Ax, Ay, Az for each particre to -

be between -1 and +1. These velocities are then scaled [see Eq. (109)]3 so that

N
1.2 2. m i'= 2 k)(149)

3 where the factor 2 is included according to the discussion above.4

The initial velocity distribution is not normal. We expect that, as

I the calculation proceeds and the system approaches equilibrium, the

distribution will become normal. This helps determine whether or notI Al
the system has attained equilibrium and will be discussed in Sec. IV.D.
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Note also that the temperature is not specified precisely as an initial

condition. We specify the initial conditions as outlined above, and

when the system equilibrates, we calculate the system temperature from

I the average of the kinetic energy as given in Eq. (109).

2. hcp Initial Positions. We specify the initial particle posi-

I tions for hexagonal close-packed crystals by placing the particles at

the perfect hcp lattice sites. Figure 13 shows an hcp lattice, and the

lattice vectors a, b, and c in the Cartesian coordinate directions.F: With these lattice vectors there are four particles per unit cell,

placed at positions given in Table I.

These unit cells are repeated throughout the calculational volume

to yield an hcp structure with one set of close-packed planes normal to

the z-axis. For a perfect hcp structure, which corresponds to a close-

packing arrangement of spheres, the relationships between the lattice

vector magnitudes and the volume per particle are

I b- av , c -a/73
and (150)

I 3 2 a3Q0 -qa c a"-

TABLE I

PARTICLE POSITIONS WITHIN AN hcp UNIT CELL

Particle x y z

1 0 0 0

2 1/2 a 1/2 b 0

3 1/2 a 1/6 b 1/2 c

4 0 2/3 b 1/2 c1
U|

.. . .1-= =-
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The radial distances to the shells of particles relative to the origin

placed at one of the lattice sites and the number of particles within a

shell are shown for a perfect hcp lattice in Fig. 14. The bcc posi-

tions are also shown on this figure, along with a plot of the effective

pair potential.

An hcp crystal produced by the molecular dynamics program is shown

I in Fig. 15. In this figure the near neighbors within each close-packed

plane normal to the z-axis have been connected by lines for clarity.

The dashed and dotted vertical lines indicate the relative positions of

the planes. Figure 16 shows two such planes as viewed looking down the

I z-axis. Here we have noted the traditional A, B, C designations for the

relative positioning of the planes. For an hcp structure, the close-

packed planes are stacked in an ABAB... arrangement. For a face-cen-

tered cubic (fcc) structure the stacking is ABCABCABC-.

3. bcc Initial Positions. The lattice positions of a body-cen-

tered cubic structure with an a' lattice constant (cube-edge dimension)

are determined easily. The distance between a particle and its nearest

neighbor is R1 and

R1 =- a' (151)VT

There are two particles per unit cell so that the volume per particle

I is

a' 3 . 4 3
0 2 3 ( 52

The position vectors I(N) to all points in the lattice may then be

specified 2 by

I I 
_ _ _
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Fig. 15.
The hexegonal close-packed structure as set up by the
molecular dynamics program. Solid lines are drawn
between nearest neighbors in each close-packed plane
normal to the z-direction for clarity. The dashed
lines indicate the relative positions of the planes
marked by A and B.
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0. * Fig. 16.

Close-packed hcp planes viewed down the z-axis. The
dashed lines indicate an A-plane in Fig. 15. The solid
lines indicate a B-plane. For an bcp structure, planes
which occupy the C positions do not occur.
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R(N) + + N3 ) (153)

VT6

where N., N2, N3 are integers and are constrained to be either all even

or all odd. This constraint is given equivalently by requiring that

(N1 + N2). (N2 + N3), and (N1 + N3) be all even. The distance to each

particle is given by

232
jiNj-! N2 +N2 + 1N2 (154)

- ( 1  2 3+ N

Using these relations we easily generate the points in a perfect

i bcc lattice with a computer program and we have used this method to

study perfect lattice calculations of the total crystal potential, as

described in Sec. IV.C.

However, for the molecular dynamics calculations we -hoose to use

a different but equivalent method. We want to create a bcc structure

i that is oriented to resemble as closely as possible the hcp structure

that we are studying. We will create a bcc system with (110) close-

Ipacked planes normal to the z-direction because our hcp close-packed

planes are normal to the z-direction.*

This may be accomplished by setting up a face-centered tetragonal

(fct) lattice with lattice vector magnitudes given by

a-c - v"2 b -V-a' (155)

where a' is the desired bcc lattice constant. This structure is shown

schematically in Fig. 17. The dashed lines outline the cubic box.

Based on a procedure by Brad Lee Holian, Los Alamos National Labora-
tory.

t~u
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Fig. 17.
IA face-centered tetragona structure with a ,,c

/2- b appropriate to produce a body-centered cubic
(bcc) structure with (110) planes normal to the

z-direction. The four points in a unit cell are

numbered. The dashed lines indicate the bcc struc-ture.
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The bcc (110) planes are the faces of the fct structure normal to the

I z-axis.

This crystal structure has four particles per unit cell with 44

positions given by Table II and indicated in Fig. 17.

* Figure 18 shows the bcc lattice as set up by the molecular dy-

namics program. In this figure a body-centered cube is outlined and

I lines are drawn through the cube diagonal and body-centered particle to

indicate the (110) plane. Figure 19 is a drawing of the same lattice

with lines drawn connecting the nearest neighbors within a close-packed

plane. The numbers 1 and 2 designate relative positions of one plane

with respect to another. Figure 20 shows a "l" plane and a "2" plane

i as viewed looking down the z-axis. These last two figures may be com-

pared with Figs. 15 and 16 for the hcp lattice. We note here, in pass-

ing, that a slight compression of the planes in Fig. 20 in the y-direc-

tion to form hexagonal planes and a relative shift between planes 1 and

I 2 in the x-direction will create a hexagonal close-packed structure (or

fcc structure, depending on the stacking). The radial distances to the

shells and the number of particles in each shell for a bcc lattice are

shown relative to hcp structure and the effective pair potential in Fig.

14.

TABLE II

PARTICLE POSITIONS WITHIN THE fct UNIT CELL

Particle x y z

2 1/2 a 1/2 b 0

3 1/2a 0 1/2c

4 0 /2b 1/2 c
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Fig. 19.
The same body-centered cubic structure as in Fig. 18
but with lines drawn between the nearest neighbors
within a close-packed plane for comparison with the

hcp structure of Fig. 15.
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C. Determination of Run Parameters

In this section we determine run parameters for use as input to the

molecular dynamic calculations. These parameters are the time step Atof

Eqs. (90)-(92), the maximum range of the potential RHAX (see Fig. 1), and

the system size. There is no standard procedure for choosing these

* parameters and generally each must be investigated to minimize the ef-

I fects on the calculations. We discuss hov we have determined each of

these parameters for use in our calculations.

1. Determination of the Time Step. The time step must be kept

small enough that errors of order (At) 3inherent in the central differ-

I ence scheme described in Sec. II.B are negligible. Aother way of think-

ing is that we must not let the particles in the system move very far

before stopping and recalculat'..g the forces on them. Also, we must not

have At so small that the calculations require an inordinate amount of

computer time.

I To evaluate At, we investigate the environment that a single par-

ticle in our system experiences. We do this by performing a "cell model"

I calculation where one particle is allowed to move in the force field of

all the others which are constrained to their perfect lattice positions.A

Doing this, we can map the potential surface for a particle in this sys-

I temn.
We set up a bcc lattice with near neighbor distance R1 of 6.93 a0,

I 3 I
which is appropriate to an atomic volume for sodium of 256 a0. A plot

of the potential surface for a particle moving in the (001) (or .'y)

plane in the 4'x and +y directions is shown in Fig. 21. This cell model I
potential well is quite harmonic and symmnetric, as shown in Fig. 22,

where the potential of a particle moving along three crystal directions
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is plotted versus the square of its distance from its perfect lattice

site. The directions were chosen to indicate the most and least dras-

tic paths for the particle. The three directions shown are (1) the

(111] direction which is toward the body center (the nearest neighbor),

1 (2) the (110] direction which is across a cube face diagonal, and (3)

the (100] direction which is down a cube side.

* 25 The curves are linear in r out to at least an atomic unit and we,

therefore, represent the potential in this region by a harmonic poten-

tial of the form

~()=kr 2 + . (156)

We calculate the slope of the line for the (111] direction (the

largest slope of the three) and find that

I k ~ 0.00 22
y/0

I which allows us to calculate the period of a harmonic oscillation in

this potential as

<GI
where TO is the time unit evaluated in Sec. NV.A. We now use a conven-

tion which is based on experience and says that a conservative time

step estimate should allow a particle to move 1/60th of its period per

time step. Using this estimate would yield a A~t of about 1.0 TO. We

3will use this number for our calculations.
2. Determination of RHAX. We choose the range of the potential

IRMAX (see Fig. 1) with two thoughts in mind. We want the effect of all

particles farther away from a given particle than RMAX to be negligible
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and we want to minimize the effect of particles moving from outside to

inside the RMAX range. Noting the small magnitude of the oscillations

3 in the potential and force functions of Figs. 9 and 10, we intuitively

feel that an RMAX greater than 16 a0 would be suitable. To get a

I better indication of the effect of RHAX on the calculations, we will

calculate the perfect crystal total potential per particle for the bcc

I lattice for different values of RMAX.

The total crystal potential per particle is given by Eq. 0L06) as

N N
1 V

where

rij " I i- r j (159)

To calculate this for a perfect crystal, we arbitrarily place one par-

I ticle at the origin (particle i) so that

I ~i~[i (r) . (160)3 i -I j -

The sum over i is N because the result for all particles in a perfect

lattice is identical. We take the sum on j to be over all the other

3 particles. The result is

N
D . ' (ri ) " (161)

j-2

I
To calculate the crystal potential, it is inappropriate to extend

3 the discrete sums to infinity. Additionally, the values for the

~-~ +- -*T -= .- ..- . .

L
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I molecular dynamics system will be sumed discretely using Eq. (106) and

l will be cut off at RMAX, where RMAX must be kept to a reasonable value

so that the length of the calculations does not become prohibitive.

We will, therefore, separate the discrete sum into a discrete part

(subscript d) out to RMAX and a continuous part (subscript c) from RMAX

5 to infinity, so that

l3 d + c '(162)

where the discrete part is given by

r rRMAX
ij

j-P (163)

We calculate the continuous part by assuming that the density

approaches a uniform distribution at large r. For a uniform density

with one particle assigned to each volume per particle, Q0, the system

j potential is given by

I f dr r20(r) (164)

I The continuous part in Eq. (162) is given by

|I
(D = 21r f dr r 2 (r) .(165)

The total number of particles within a sphere of radius r is

plotted in Fig. 23 for the hcp and bcc crystal structures and the uni-

5 form density distribution as given by (4w/30)r3. Also shown in this

I
'Ii
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Fig. 23.
Number of particles within a given radius vs radius for the hcp
and bcc crystal structures and for a uniform density distribu-
tion. The vertical lines on the r-axis indicate the positions
of the crystal structure shells and the height of these lines
indicates the number of particles in each shell.
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figure are the positions and number of particles in each shell of the

crystal structures.

To calculate the continuous contributions to the potential, we will

3 use the large r limit for the potential. As discussed in Sec. III.B.5,

in this limit the potential goes as

cos 2k r
f

I (2kfr)3

We calculate this term to be

I -18 z2 os 2kr
,A'-W2k f  fs (166)I)large r ' A~r) _f (2kfr)3

where f is the electron kinetic energy at the Fermi sphere and w2kf

is the magnitude of w Bq/(q) evaluated at q - 2kf. For an atomic volume

of 256 a0, which yields a Fermi wavenumber of 0.4872 ao, the value for

W2k f is 0.0067. We call pA(r) the asymptotic form of the potential func-

3 tion. This asymptotic form is plotted in Fig. 24. The dashed line in

this figure is the actual potential function [O(r) of Eq. (77)].

Using the asymptotic form, we calculate the continuous part of the

crystal potential to be

/2 )( -187z 2 w2u 22 2
2---- - -Ci(2kf RMAX) (167)3c E I f3

' I where Ci is the cosine integral as defined in Ref. 22.

We calculate the total crystal potential using Eqs. (162), (163), and

(167). The results are plotted in Fig. 25. Large jumps are noted in the

! i

I l l IlI1 gII lIII _ _ ll lll~lir
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Fig. 24,. ,
Th smttcfr ftepotential, O A(r), asgvnby'Eq (166).

The dashed line is the actual potential, (r).
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I value as shells of atoms in the structure are included in regions where

I the magnitude of the potential function is appreciable. The results

shown in this figure indicate that a choice of RMAX greater than 16 a0

J is suitable because the magnitude of the potential is small and the

V effect of particles outside RHAX can be suitably accounted for by the

I continuous contribution pc. There is one more point to consider before

investigating the magnitude of this contribution.

I As mentioned at the beginning of this discussion, RMAX must alsoF be chosen to minimize the effect of particles moving from outside to

inside the RMAX range. This is done by choosing RMAX to coincide with

one of the zeros of the force function. In this way, a particle sitting

at RXAX would have seen zero force whether or not the potential was cut

I off there.

With the above discussion in mind, we have somewhat arbitrarily

chosen RMAX to be at the zero of the force function after one positive

hump and one negative hump (see Fig. 10). This occurs at RMAX - 21.65

3
a0 for sodium with a volume per particle of 256 a 0. At this RMAX we

calculate the following values for (D, (Dcand their ratio.I -1.154 x 102

I 1.1 x 10c -
/c P 9.5 x 10

The continuous contribution to the potential is less than 1% of its

value. Because this value is independent of the details of the molec-

ular dynamics system structure and is much smaller than the absolute

accuracy of our calculations (see discussion at the end of Sec. V), we

will neglect it for this study.
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Because the potential and force functions depend on the atomic vol-

i ume, the appropriate value for RMAX will also vary. Figure 26 is a plot

of the RMAX value appropriate for each atomic volume in our range of

I interest. A linear fit of the points of this plot yields

- RMAX - 0.008063 Q + 19.59 (168)

1 0

We use this value of RMAX for our molecular dynamics calculations.

3. Determination of System Size. The system size is determined in

the molecular dynamics program by specifying the number of unit cells to

be stacked in a given direction. Lx , Ly, and Lz are integers that spec-

I ify the number of unit cells in each Cartesian direction, respectively.

If a, b, and c are the magnitudes of the lattice vectors in these direc-

* tions, then the lengths of the sides of the computational box are

xL - Lx  a

yL L b , and (169)

zL-L *cz

We are constrained by the minimum image convention, discussed in

Sec. II.B.3, so that each box length must be at least twice the magni-

tude of the range of the potential, RMAX. We mentioned in Sec. IV.B.2

the possibility of the hexagonal close-packed planes normal to the z-

axis being stacked either in the ABAB... (for hcp) or ABCABC.-- (for

fcc) arrangement. Therefore, we would like to have a multiple-of-six

number of close-packed planes in the z-direction so that neither of
Nthese possibilities is prohibited by the periodic boundary conditions.AWith these constraints in mind, we choose for the hcp structure

L -7 ,L -4 L -6 , (170)
x y

71 -- -.. '. ~ -A
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and for the bcc structure (in reality a face-centered tetragonal as

discussed in Sec. IV.B.3)

Lx - 4 , Ly 7 , Lz  6 . (171)

Because each of these has 4 atoms per unit cell, they contain N 672

particles and have 12 close-packed planes normal to the z-axis. Figures

27 and 28 are schematics of these structures in their initial, perfect

crystal configuration.

I To investigate the system size dependence, we have calculated the

temperature for bcc sodium for system sizes N - 672, 864, 1372, and

2048 at input temperatures of 50 and 300 K. The results of these calcu-

lations are shown in Fig. 29. It is obvious from these results that no

definitive statement may be made regarding the N dependence other than

it is small and within +1% for these large systems. Therefore, we per-

form our calculations using the 672-particle systems described above.

3 D. Example Calculations

To illustrate the molecular dynamics technique and the approach to

equilibrium, we describe two calculations in detail. The calculations

are of the bcc structure described in Sec. IV.B.3, performed at an atomic

volume of 256 a and with input temperatures of 50 K and 300 K, respec-

tively.

These calculations were run for 300 cycles, which corresponds to a

time of 150 time units or 1.05 x 10 seconds. The time histories of

the system energies per particle are shown in Fig. 30. The solid lines

Uare the total (potential plus kinetic) energy, the dashed lines are the

3 potential energies, and the chain-dashed lines are the kinetic energies.'IIII
,'

41 U I I-Ii-I ~ nmi'ilI
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as set up by the molecular dynamics program.
b. The same structure but with nearest neighbors vitnin a close-
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It is obvious from these figures how the energies equilibrate from the

initial conditions where the particles are placed at perfect lattice

sites and assigned initial velocities as discussed in Sec. IV.B.l. As

the particles move from this initial, unphysical condition, part of the

energy is partitioned to potential energy and the system equilibrates

I with the total energy remaining constant.

Once the system relaxes from the initial conditions and begins to

Ioscillate about the equilibrium values (this happens at about 45 time

units for these calculations), we begin our time average and average to

I the end of the calculation.

jThe average of the kinetic energies yields the temperature by way

of Eq. (109). The average total energy is the structure-dependent en-

jergy of the system, Est which will be added to the volume-dependent

energy contributions, as discussed in Sec. V, to yield an equation-of-

state point, ETOT (Q0,T), in volume and temperature space. Table III

gives the E and T values obtained from these calculations.

An indication of the thermal motion of the particles in a system

may be obtained by calculating their atomic distribution. It is given

by

S4Trr 2 d(r) , (172)

I
TABLE III

RESULTS OF THE EXAMPLE CALCULATIONS FOR bcc SODIUM
WITH INITIAL CONDITIONS OF 50 K and 300 K

0 o(a0) T (K E s (Ry)

256 50.17 + 0.2 -0.0105949 + 1. x 10
- 7

256 293.38 + 0.6 -0.0058439 + 3. x lO- 7

I

4 1 mmmmm m mmmmmmmmm m
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I where d(r) is the actual particle density at a radius r from a reference

3 particle. We calculate this distribution for each particle in the sys-

tem and divide the total by the number of particles to obtain the aver-

age atomic distribution for the system. Figures 31a and 31b show the

atomic distributions for the systems described above. The solid lines

I are the distributions at e .-iven instant. The dashed lines are the

distributions averaged oi.r5 100 time units, which indicate the perfect

I lattice positions about O.iich the particles are oscillating (compare with

Fig. 14). At 300 K ic is difficult to distinguish the structure of the

lattice.

A more qualitative indication of the thermal motion of the par-

ticles is seen from Figs. 32a and 32b which are plots of the positions

I of the particles at a given instant seen looking down the x-axis. In

the perfect lattice position, each y,z lattice coordinate would show

only one point. At 300 K there are indications that some particles may

I have moved out of their perfect lattice positions. We will investigate

this more later when we discuss melting.

3 As mentioned in Sec. II.B.4, an indication of system equilibration

is that the kinetic temperatures be isotropic. The kinetic temperaturesj

Iare T , T y, and T z, and are calculated from the velocity distributions

in the x-, y-, and z-directions, respectively [see Eq. (110)). Figures

33a and 33b are time history plots of the system temperature (solid line)

I and the three kinetic temperatures for the example calculations. The

temperature is seen to be isotropic within the fluctuations of the sys-

I tem temperature.

For a final topic regarding these two example calculations, we

discuss a measure of how normal the velocity distribution is. Such a
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m measure is the kurtosis [see discussion after Eq. (110)]. The nth-order

l central moment of the N-particle distribution is given by

N
n N1: (xi  )n (173) ',

i-i

l where x is the value of x for the ith particle and i is the mean. The

kurtosis measures the "degree of peaking" of the distribution and may be

l defined in two different ways. The first kurtosis, denoted by $ is
19

P4- (174)
2

2 is the second-order central moment and is the square of the standard

j deviation, a = (kT/m) . The second definition of kurtosis we denote by

C.
23

C - 4 -3u 2  
(175)

i We note that

m (+1736C)
4__2

(kT/m)2  (176)

5 is equal to three for a normal distribution and this value for 5 is .

used as a standard to indicate how normal a distribution is. C is

zero for a normal distribution.

l It is not possible to precisely predict the behavior of the kur-

tosis. However, we may derive an expected dependence from a simple

l model and then compare the calculated kurtosis with it to see if the re-

sults are consistent. As we discussed in Sec. II.B, the molecular dy-

namics system forms a microcanonical ensemble with the additional
'It

•I

4
... .- Ilm l V.
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constraint that the system momentum is conserved. Holian has calculat-

ed the kurtosis for a microcanonical ensemble of a one-dimensional chain

of hard rods. His calculation is presented in Appendix B. For large

J N, he predicts that the kurtosis, C, is

6 6kT

i 2

so that we expect C to vary as T /N. Figure 34 is a time history plot

of the measured kurtosis C times the factor N/(kT/m)2 for the 50-K and

300-K example calculations. We see that C rapidly increases from its

large, negative, initial value as the system equilibrates. The value

1 2
for CN/(kT/m) equilibrates, roughly, to between -100 and 0 for both

i cases.

With these numbers, we calculate 5.

3 + CN/(kT/m)2  3.0
S --. 5  " (178)

The measured values of C are consistent with the results based on the

simple model of Appendix B. The value for 6 of 2.85 (close to 3) indi-

cates that the distribution may be adequately represented by a normal

distribution. 19

In this section we have discussed two example molecular dynamics

calculations. We have found that the system we are using is adequately

represented by a normal distribution of velocities and is reasonably

isotropic. To determine the equation-of-state points that will become

our data for studying the equation of state of sodium, we will follow

Brad Lee Holian, Los Alamos National Laboratory.
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i the procedure outlined above. After allowing the system to relax from

the initial conditions, we take a time average of the calculated values

to yield an average system temperature and average structure-dependent

energy. This structure-dependent energy is added to the volume-depend-

ent terms, as described in Sec. V, to yield an equation-of-state point.* I

I
I
I
I

I
~.s

, 4
I

*I I.

* •I
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I V. CALCULATION OF THE TOTAL SYSTEM ENERGY

We now determine the expression for the total system energy. In

developing the effective ion-ion interaction potential of Sec. II.A,

I we neglected the terms that were dependent only on the volume of the

psystem and not on the detailed ion arrangement. We will here evaluate

these terms in a consistent manner so that they may be added to the en-

ergy calculated by the molecular dynamics program to yield the total

system energy. We will call these terms "volume-dependent terms" (E V)

and the molecular dynamics energy the "structure-dependent terms" (E ).

The total system energy, ETOT, is given by

E TOT = TI + VI + Ee TI + V (179)

I where TI is the kinetic energy of the ions, VI is the ion-ion potential,

and Ee is the total conduction electron energy. We write V 121se as

the sum of the coulomb and exchange repulsion terms of Eqs. (75) and

(76).

1 22 -Y r
I E + Be (180)V"VES + R rz e + J 12 CIij ii ij

The sums are over all ion positions, where rj is defined by

r r (181)
rlj -ri

and the factors of 1/2 in Eq. (180) take into account double counting.

To keep track of the volume-dependent terms in the total conduction

electron energy, Ee, we evaluate the electron energy terms of Eq. (13)

in a slightly different, but entirely equivalent manner. We rely on

the local pseudopotential approximation to write [see Eqs. (34), (56),

and (57)]

--- " --- -- ---- .., .... m mm m mma ini
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<twlt+ T> t W(r) e-q r d 3r -W q S qw q(182)

We use the subscript 0 to denote q - 0 terms and we, therefore, write

Eq. (13) for the electron energy in the kth state as

Ek ek + WO + WqW-q( k -_ q) -1 (183)

q

where the prime on the sum indicates that the q = 0 term is omitted.

We have constructed the local pseudopotential, which consists of bare-

ion, screening, and %xchange and correlation terms given by Eq. (39) as

W - WB + Ws + Wx WB + Wsx (184)

I where, by Eq. (71)

WB = Wz + W . (185)

Wz is the coulomb part of the bare-ion potential and W is the core re-

pulsion part.

To calculate the total conduction electron energy, we must sum

over all the occupied states and subtract off the electron-electron Z

coulomb self-energy, Eee and the exchange and correlation energies,

E x which are double-counted in the smIEk

The coulomb self-energy is given by Eq. (52) as

I
Eeeq d 0 WO+ aEdq W q (186)I

where here we include the volume-dependent q - 0 term.

I46

- - - - anna o-- ,. - --q •_
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I In dealing with the exchange and correlation effects, we have as-

sumed that they may be approximated by a local one-electron potential
2

(see Sec. II.A.5). Wallace 2 discusses the approximation for exchange

that depends only on the density of the conduction electrons. The total

exchange energy of the conduction electrons in their ground state is

3 assumed to be

* nk f (r)X (r)Pk(r) dr , (187)k

where X(r) is the operator that represents exchange and correlation and

is a function of the density only. He uses a variational calculation to
relate the exchange potential W to X by

x

Wx d (188)

where d is the conduction electron density. He evaluates the exchange

I and correlation double-counting correction2 as

I E -- d(X 0 -Wxo) W (189)

q

so that the total double-counting correction is

E + E -dW - Ido(Xo - Wo) + d W (190)
ee xc 2 0oso q sx-qq

We may now write the total conduction electron energy as

S(E + E (191)

i k

I

I~



I The sum over the occupied states is

3 ~kE, hh ~ + NzW. + dqW *(192)

k k q

where we have used the expression for the Fourier component of the

density d of Eq. (45) and do - z/%O. We arrive at the following ex-

pression for the total conduction electron energy:

E = nkE:k + NZWo - doWs+ q(Xo - WxO) + Eq d(W-W - (13)

e kk 0so 0 . 2 qO -Vq( sx-qq (193)

At this point we must digress for a moment to discuss how the

total adiabatic potential, V - VI + Ee, is evaluated for a crystal

structure. From Eqs. (179), (180), and (193), V is given by

V i ze 2 + -E B rij +Ens+NzWo -- d W
2 E i 0 a 2 0 soij rij ij k

+ ?d (X - Wx0 ) + dq(W_ - Wsx~q (194)

q

The last term in this expression is evaluated using the relations of

Sec. II.A to be

L'dw - = S S F(q) b 15

2 (- sx-q) qq-q ~-E 15
q q

This is the band structure energy of Eq. (30) with F(q) given by Eq.

3 (79) so that the expression includes the screening, exchange, and cor-

relation effects as discussed in Sec. II.A. Note that the first sum in

Eq. (194) is divergent as are the Wso term [see Eq. (53)] and the W zo

'
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1part of W0[see Eq. (72)]. A standard evaluation of the first sum is to

use the Ewald method 2whereby the first sum in Eq. (194) is split into

two sums, one in q space and one in real space. The divergent term in

this sum cancels with the W 0 and W20o terms 2so that the expression for

V is finite. The band structure energy is evaluated readily for a per-

fect crystal because the structure factors are delta functions about the

II reciprocal lattice vectors, Q, and

E Q F(Q) ,(196)

3 2
3 which yields a finite result. Wallace discussed this method in detail

and used it to evaluate the total adiabatic potential for sodium and

Ipotassium. 21
For our purpose here, however, we are calculating the terms for the

adiabatic potential of Eq. (194) differently and we must ensure that we

are properly accounting for all the terms. Having restructured the q-

space sum for the band structure energy of Eq. (195) in terms of a real

I space sum of the effective interaction, V1 (r), over arbitrary ion

1,6positions [see Eq. (31)], we note an obvious difficulty since the

I sum

V IN 1 ( r 1 j) (197)1

is divergent because of the leading h/r term at large r [see Eq. (139)]

3in V IND(r).
The difficulty arises because the q-space sum of Eq. (195), origi-

nating from the perturbation calculation [see Eq. (13)], explicitly
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I
leaves out the divergent q = 0 term, yet we have reintroduced it by

3 transforming to the sum in r space, which we take to infinity. To

correct for this discrepancy, we allow the q - 0 term to be part of

3 the q-space sum when we restructure

N S S- F(q) (198)
q|1 as

SE' VIND(rj) ,F(q) (199)
ij q

1where

I VI1 D(r) .2 F(q)e-i. (200)

qI
which are the same as Eqs. (31) and (32) with the primes missing from

I the q sums. E., as defined here, does not have a finite value. Note

that, with the help of Eq. (195),

1 : S F(q) N S S F(q) + NSS.F~q) - - d (W - W _)

q-q q-q q-q 1q-0 2i.. q( -q sx-q)
q q q

-q - q 2 d0 W W )*(201)

q

so that we may write for the total adiabatic potential

I

I I,

jIz
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V 1 z2 e 2 + + Efl.Kkk NzWQ d W

i ri ij k

+ Pd 0(X 0 "W 0 ) - d(W 0 - WO)+ Zdq(W-q -Wsx-q) (202)
q

The last sum is now, in a consistent way, equal to

ViND (rij) + F(q) (203)
iJ q

i The terms may be combined and arranged to yield

_l [12e2 + YB rij + (r +l
2N E r i B IND ij N ~ k k

I i -l ij k

+ z + X0 - : + E (q) (204)

q

This is the expression for the total system potential, which is added to

the kinetic energy of the ions to yield the total system energy of Eq.

i (179).

E TOT " TI + V - Tl + VI + Ee (205)

" iThe term in the square brackets of Eq. (204) is the effective ion-ion

interaction, P(r), of Eq. (77) and the 1/r coulomb term is canceled at

large r by the leading -1/r term in V1N(r), as discussed in Sec. III;

therefore, all the terms in Eq. (204) are finite.

The ion kinetic energy is the time-averaged molecular dynamics

3 kinetic energy, as discussed in Sec. II. The sum in the brackets of

Eq. (204) is the time-averaged molecular dynamics potential energy.i

--- --- -Iu.mn -l l i. . .l ,
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The sum of the two is the total structure-dependent system energy, E

and is calculated by the molecular dynamics program as discussed in

Sec. III.B.5. The remaining terms of Eq. (204) are the volume-depend-

ent terms, Ev, which must be calculated separately. We will now evalu-

ate these terms.

As in Sec. III.A.l, we find it convenient to write the volume-de-

pendent terms as functions of rs, the radius of the sphere whose volume

is the average conduction electron volume,

4 3  a0 (206)3 r " T tz

I 1- nc

We have evaluated nkEk in Sec. II.A.2 as an integral over the

Fermi sphere to arrive at the average kinetic energy of the electrons

times the valenceI
-- flkT"S 31 2.210 (207)nkF-k  5 -gf 2rs  27
k r Ry

W 0 is given by Eq. (126), so that

-z -z(l.22772)

2 3 f 2 Ry (208)r

To evaluate - Wxo we use Eq. (61) to writeI1
w 1 --72 f(q) dq (209)

I q-0 q

I 2

- - . . . . - - A .. ,. .
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I
With Eq. (81)

f(q)- 2q (21)

a 2(q + kf)I and

I =.d (211)

II we see that

So -I~z~e .40725 8) Ry (212)
2 2 r s

The remaining volume-dependent term is F(q), which we convert
Nq

I to an integral, so that

NI'F(q) f j q 2F (q) dq .(213)

q 2w

l1 This integral is evaluated by numerical integration using the same pro-

cedure by which we evaluate the integral of Eq. (78), as described in

I Sec. III.B.5.

X0 is the total exchange and correlation energy per electron for a

uniform electron gas,2

X0  + . (214)

cX is the Hartree-Foch exchange energy and is calculated to be the

standard result -

0.916
zex  r Ry (215)

I

Ii 5
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We approximate the correlation energy per electron, c ,using the

IPines-Nozigres formula. 1 They interpolate between expressions that are

valid in low-q and high-q regions in the same sense as the Hubbard in-

I terpolation formula discussed in Sec. II.A.5. The Pines-Nozigres formu-

I la yields

ze z(-0.115 + 0.031 9.n r ).(216)

All of these volume-dependent terms are evaluated separately and

I added to the molecular dynamics results. Values of the individual terms

evaluated at an atomic volume of 256 a3 are given in Table IV, Table V
0

gives the total volume-dependent contribution to the system energy for

several different volumes. This table also gives the results of the

molecular dynamics calculation of the static (T - 0) potential energy

per ion for bcc sodium. The sum of the two terms is given in the third

column and is the total static potential of the system at the volume

I indicated. The values of this table are plotted in Fig. 35, where the

delicate interaction between the structure- and volume-dependent terms

is evident.

* The volume-dependent terms are not determined absolutely beyond the

second or third decimal place. However, we will be observing differ-

I ences between structures at the same volume that are two or three orders

of magnitude smaller. Therefore, we will calculate the values to the

I accuracy of Table V and recognize their validity when we have been

treating the volume-dependent terms the same for each of the structures

but not necessarily in an absolute sense.

We now have all the information necessary to calculate the total

system energy. We will perform a molecular dynamics calculation at a
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TABLE IV

CALCULATED VALUES OF THE VOLUME-DEPENDENT TERMS OF EQ. (214)

EVALUATED AT AN ATOMIC VOLUME OF 256 ao, rs 3.9390

Value
Term Expression (Ry)

1 k/2.210\

s

I z /(.916 -0.23255

Iz -z(0.115 - 0.031 kn r) -0.07250
c

IzW 0  '272
0 1.2z27 -0.07913

2

-zw 0 z /0.407258) 0.05703

I
1 E q O0 0 2

N 2,2 f q2F(q) dq -0.27828

q 0
Total -0.46299

I .
After the original publication of this dissertation, a program-

ming error was found in the subroutine which calculates this
integral. Correction of this error results in a difference

in the calculated volume-dependent terms, Ev, of about -0.02 Ry, X

causing the reported values to agree better 
with experiment.

The new values have been included here, where necessary, or

errata notes specified. 3

Uo
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I TABLE V

AT THE VOLUME INDICATED, COLUMN 2 IS THE SUM OF THE VOLUME-DEPENDENT
TERMS OF EQ. (204), COLUMN 3 IS THE STATIC (T - 0) POTENTIAL PER ION

FOR bcc SODIUM, AND COLUMN 4 IS THE TOTAL STATIC SYSTEM ENERGY
E E E+E

Q 0 Ev Es Ev s
a,(Ry) (Ry) (Ry)

232 -0.466836 -0.0070983 -0.473934

- 240 -0.465522 -0.0087709 -0.474293

250 -0.463924 -0.0105869 -0.474511

256 -0.462989 -0.0115468 -0.474536

i 260 -0.462374 -0.0121400 -0.474514

270 -0.460868 -0.0134687 -0.474337

280 -0.459405 -0.0146061 -0.474011

I
given volume, Q09 and input temperature. Once the system has equili-

i brated, as discussed in Sec. IV.D, we will calculate the average tem-

perature, T, potential energy per particle, and kinetic energy per par-

ticle. To the potential and kinetic energies, we will add the volume-

i dependent energy to obtain the total system enerty, ETOT(0,T), as an

equation-of-state point in volume and temperature space.

In
I.

I,
W 'I =* d a- ..a g G D H ~ H
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Fig. 35.

The structure, Es, and volume, Ev, terms and the total system energy,
ETOT, for bcc sodium at a temperature of zero Kelvin. The values
for Ea have been shifted and can be read from the scale on the right.
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VI. RESULTS

A. Equation-of-State Points for Solid Sodium

I In this section we present the results of calculations of the total

system energy, ETOT' for solid sodium in the hcp and bcc phases.

1. Static Crystal Potential. We determined the static (zero tem-

perature) system energy for sodium by calculating the crystal potential

due to the ion-ion interaction potential, 0(r), using Eq. (106) and add-

I ing to it the volume-dependent terms as discussed in Sec. V. The results

of this calculation for bcc sodium were presented in Table V and are

I plotted as the lower curve in Fig. 35. The results for both the bcc and

4 ' hcp structures are plotted in Fig. 36 as a function of volume. We will

call this energy the static crystal potential D0"

We performed a least-squares fit to the calculated points in Fig. 36

to a cubic polynomial,

I2 3
(Q + p2  + + .Q (217)

The coefficients of this polynomial are given in Table VI.

TABLE VI

COEFFICIENTS OF THE CUBIC FIT OF THE CALCULATED STATIC CRYSTAL
POTENTIAL AS A FUNCTION OF ATOMIC VOLUME

iTerm bcc hcp

Pl (Ry) -0.310428 + 0.011 -0.297263 + 0.035

_ _ I
P2 (Ry/a 0 ) (-1.676211 + 0.13) x o- 3  (-1.828394 + 0.42) x 10 -

P3 (Ry/a ) (5.575895 + 0.51) x 10 - 6  (6.161591 + 1.6) x 10 - 6

999I P4 (Ry/a 0 ) (-5.985510 + 0.66) x 10-  (-6.744432 + 2.1) x 10-

*

U2

it|



122

I

I

If0 -

| I . \ -

U

I

I m0.0 s.0 a40.0 2,.0 aa.0 25.a .a mS.o WO.0 275. 0 ,ZW.0

Fig. 36.
The total static crystal potential for hcp (circles) and bcc (squares)
sodium.
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i For this classical system, at zero temperature, the Helmholtz

free energy, F, is equal to the static crystal potential and we calcu-

late the zero temperature pressure from

PO=a0 0 (218)

3 and the zero-temperature bulk modulus from

0 2) 0 D (219)

T=O 0

3 We calculated the zero-temperature pressure and bulk modulus using the

fits to Eq. (217). The results are plotted in Figs. 37a and b.

The measured zero-temperature and pressure static crystal bulk modu-

lus for bcc sodium are reported by Wallace 21 as

4)0 -0.46 Ry ,

3 255.5 a0 , (220)

Sand B0 = 5.05 x 10 - 4 Ry/a 3
and0 y 0

These are the values he used to fit the parameters aB' ' and p in the

pseudopotential, as discussed in Sec. III.A.2.

, For bcc sodium our calculated 0 is -0.475 Ry (see Fig. 36). We

calculate the zero-pressure volume to be 255.1 a0 , which !- 0.2% different

from the observed value, and the bulk modulus to be 5.08 x 10-  Ry/a0,

which is 0.5% different from the observed value.

As is apparent from Fig. 36, we calculate that the hcp structure is

the stable phase for sodium at zero temperature. We calculate an energy

I1

_ _ _ _ _ _ _ _ _ _ _

1-=
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~Fig. 37.

The zero temperature (a) pressure and (b) bulk modulus for the hcp~(dashed lines) and bcc (solid lines) of sodium as calculated from the

flits to Eq. (217).
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difference of 14 x 10- Ry at an atomic volume of 256 a0. The experi-

* mental value reported by Straub and Wallace24 is 3.15 x 10-5 Ry, and

their calculated value is 6 x 10 - 5 where they have included the quantum

I mechanical zero-point energy of the sodium crystal structures.

With (P established, we proceed in the next section to calculate

equation-of-state points at temperatures greater than zero.

2. Total System Energy. In this section we present the results of

calculations of the total system energy, ETOT' for bcc and hcp sodium at

finite temperatures. The calculations proceed as discussed in Secs. IV

and V. For each calculation the volume is predetermined as an input

parameter, the temperature is calculated from the time average of the

system kinetic energy, and the structure-dependent energy Es is the time-

averaged sum of the potential and kinetic energies. We add E to the
5

I volume-dependent term Ev to arrive at the total system energy ETOT - E

+E v .

I We know from harmonic theory that the system energy per particle

i must vary as

E = D + 3kT , (221)
0

I as T approaches zero. k is Boltzman's constant. We, therefore, write

the energy as

E(%QT) - 0( 0) + 3kT + f(%0,T) , (222)

5 so that the function f(O0,T) contains all contributions that are not

harmonic. Our calculations thus become a direct measure of this function.

The results of the calculations of the total system energy at an

atomic volume of 256 a3 are shown in Fig. 38. The solid straight linesI0
6I "4
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I
are drawn from V0 for each structure at a slope of 3k. The error bars

on the calculations are less than the size of the circles and squares.

The deviation from harmonic behavior as temperature increases is obvious

I from the figure.

I We calculated the system energy E( 20,T) for bcc and hcp sodium at

four different volumes--232, 250, 256, and 270 ao--and at temperatures

I between 0 and 400 K. The results of these calculations are tabulated in

Appendix C.

I From the calculated values of E020 ,T), Po(v), and T, we calculate

Ithe function

f(Q0,T) - E(QoT) - G2%) - 3kT (223)

directly. The results of this calculation are plotted in Fig. 39. The

I error bars assigned to the values are the calculated standard deviations

of the means of the statistical time averages. The major portion of the

j error in the calculated point is due to the statistical fluctuations of

the temperature.I a

We fit the data at each atomic volume with a T2 form, which is all

the accuracy of the calculation justifies. The function f(%oT) then

takes the form 
72

2
f(QoT) - C(Qo)T (224)

The values of C(S0) determined by a least-squares fitting procedure are

given in Table VII. These values may be compared with the value of the

T2 coefficient to the free energy of sodium estimated from heat capacity

measurements and reported by Wallace 2 as 8 x 10-10 .

|IA

I4
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Fig. 39.
The function f(SIo,T) defined by Eq. (223) plotted vs temperaL.,re

l for (a) bcc and (b) hcp sodium.
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i TABLE VII

j VALUES OF THE COEFFICIENT C(O )

Q0 bcc hcp

I (ag) (x i0-9 Ry/k2) Cx 1 Ry/k2)

1 232 0.908 + 0.64 1.301 + 0.23

250 1.012 + 0.52 1.475 + 0.50

256 1.250 + 0.10 1.563 + 0.25

270 1.350 + 0.51 2.057 + 0.33

These values are plotted in Fig. 40 along with a linear 
least-

1 squares fit to the data. The values for the fit

i C(O) C1 + C2S40  (225)

i are given in Table VIII.

The calculated values of f(20,T) for the bcc structure above 350 K

1 i in Fig. 39a were not used for the fits described above. The significant

deviation of the 270 a0 point indicates that something 
other than anhar-

SI monic effects are taking place. We checked this point and found that

some particles were diffusing from their lattice 
sites so that partial

melting had taken place. We will discuss melting in the following sec-

1 tions.

TABLE VIII

VALUES FOR THE COEFFICIENTS C1 (Ry/k2) AND C2 (Ry/k 2a) OF EQ. (225)

I bcc hcp -

C1  (-1.958 + 3.4) x 10
-  (-3.247 + 5.7) x 10

c 2  (1.225 + 1.3) x 10
-11 (1.923 + 2.2) x 1011

I
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In this section we have reported the results of the calculation of

the total system energy of solid sodium in the bcc and hcp structures.

It is given by

E(%o,T) . 0(P0) + 3kT + C(%o)T2  , (226)

I which is valid within the errors of our calculations for atomic volumes

U from 230 to 279 a3 and temperatures from 0 to 300 K.

B. The Liquid Phase

We can cause the molecular dynamic system to melt by beginning a

calculation at a temperature high enough that the particles have enough

I velocity to move from their crystal lattice positions and diffuse through

3
the system. We did this for bcc sodium at an atomic volume 256 a by

choosing an input temperature of 700 K. The temperature history of this

3 calculation is shown in Fig. 41a. If the system were harmonic the tem-

perature would begin to oscillate about 700 K because the initial energy

3 would be partitioned equally between the potential and kinetic energies

(see discussion in Sec. IV.B.l). Due to the anharmonicity of the system,

the initial temperature is about 620 K (see Fig. 41a). As diffusion

3 occurs, the potential energy of the system is increased by particles mov-

ing out of their low-potential energy lattice positions. This occurs at

3 the expense of the kinetic energy because the total energy in a molecular

K dynamics calculation is conserved. The potential, kinetic, and total

SI energies are shown versus time in Fig. 41b. Thus the temperature of the

system is lowered and the equation-of-state point moves horizontally to

Hi the left in an E,T plot, as indicated by the arrow at point 1 in Fig. 42.

We then use this calculation as a starting point to calculate equa-

tion-of-state points at other temperatures. We do this by artificially
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41a
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I

I
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256 agith t emeaue f70K

'I!



1 133

(ERRATA: Add -0.016089 Ry to values)

I. 
-- 4 1 T ' I I I'- f

4 4 6 ~ D -o 2 56 o3.

-450

W -A52
I.,V

-.456- 7 914

Dtt
-456 -

-4 6I I I I I I .
0 50 Boo 150 200. 250. 300 350 400 450. S00 550 600

T 1K)

j Fig. 42.
Equation-of-state points for solid and liquid soium
at an atomic volume of 256 a3 . The numbers irdicate
the order of the calculation as the liquid itate formed
by calculation number 1 was cooled and reheated to pro-
duce the hysteresis shown.

I

,

I

I



1344
multplyng he eloityof each particle by a factor close to 1.0 to

sloly ecraseorincrease the temperature of the system. Then when

thesysem as eacedthe temperature at which we want the equation-

I of-state point, we set this factor equal to 1.0 and allow the system to

I equilibrate and take time averages just as we did for the equation-of-

state points arrived at in Sec. VI.A.

In this manner we investigated the equation of state for liquid

sodium at an atomic volume of 256 a03. The results are the square points

Ishown in Fig. 42. The circles are the calculated bcc solid points which

are plotted here for comparison. The calculations were performed in the

order indicated by the numbers on the points. The system came downi the

solid curve, up the lower dashed curve, down the upper dashed curve, and

back up the lower dashed curve. The hysteresis that is evident in this

figure is due to the system "freezing out" available lower-energy con-

figurations as the temperature is lowered.

II The interesting point here is that the liquid phase defines its

equation-of-state curve back to low temperatures where it has formed a

metastable, glassy system. Within the confines of the periodic system

and for the short times (in a physical sense) of a molecular dynamics

calculation, this glassy state is stable enough to calculate equation-of-

state points as we did for solid bcc and hcp sodium. We recognize, of

course, that at low temperatures the bcc phase of sodium is also a metast-

I able state with respect to the hcp phase.

This glassy state is most unstable at low temperatures. We allowed

the system initially at 5 K to equilibrate for 1200 cycles. During this

time it increased its temperature to 9 K by adjusting to a lower
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I potential energy configuration and moved along the line marked "DRIFT"

in Fig. 42. Twelve hundred cycles is a rather long molecular dynamics

calculation, but represents a very short real time (4 x 10-1 s). We

will calculate the equation of state of liquid sodium by starting at a

* I low-temperature, glassy state as the initial configuration, raising the

I temperature, and allowing the system to equilibrate, just as we did for

I the solid systems.

f. Because the glassy system drifts noticeably at low temperatures, we

I must estimate the static potential of this state. We do this by calcu-4 lating the metastable equilibrium at a low, but finite, temperature (ap-

I proximately 30 K). At this temperature we expect that the system is es-

sentially harmonic in that the system energy will be equally partitioned

U between kinetic and potential (so that APE - KE in Fig. 43). We then

estimate the static potential for the glassy state as

(D . PE -KE .(227)

We changed the volume of the glassy state by changing the periodic

box dimensions and scaling the particle positions in the same ratio southat each particle retained the same relative position within the box. ;

We then estimated the static potential using Eq. (227). The results are

plotted in Fig. 44.

We fit the calculated points with a cubic polynomial,

2 3~
0 -0 P1 + p 2 ; + p 3 0 P4 % (228)I

I where the coefficients have the following values.
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P1  -0.304076 + 0.0056

P2 - (-1.712226 + 0.065) x 10
-

-6
P3 = (5.660021 + 0.26) x 10

* P4 - (-6.067466 + 0.33) x 10 
- 9

We calculated the finite temperature equation-of-state points for

the liquid state of sodium at atomic volumes 232, 256, and 270 a3 . The
0

I results of these calculations are tabulated in Appendix C and plotted in

Figs. 45a, b, and c, respectively. The equation-of-state points for bcc

I sodium at these volumes are included in these figures. The circles denote

points that were calculated starting with the bcc configuration and the

I squares denote points that were calculated starting at the glassy state.

3 The circled points on the liquid curve have melted from the bcc config-

uration.

We analyzed the equation-of-state points for the glassy state in

much the same way we analyzed the solid equation-of-state points in

Sec. VI.A. As before, we expect the temperature dependence of the energy

m to be of the form

E(%JT) ( ° + 3kT + f(QoT) (229)

However, 0 is not well determined so we calculate

D0(S0) + f(%oT) - E(Q0,T) - 3kT • (230)

3 The resulting points are plotted versus temperature in Figs. 46 a, b,

and c. We fit these points with a function of the form

D 0(S0) + f(0oT) 0(D0) + C(0)T2  . (231)

with results shown in Table IX.} :
-' . ma m m -uu m m -.m- ..m mm tNI m.
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TABLE IX

COEFFICIENTS IN THE FIT TO P0 ( 0) + f(SoT)

3 Po (Qo) C( 0)

0 (a) (Ry) (Ry/k 2 )

I 232 -0.472520 + 1.3 x 10-4  (3.915 + 1.4) x 10-9

256 -0.473094 + 1.2 x 10
-4  (2.598 + 0.75) x 10

- 9

1 270 -0.473215 + 0.9 x 10-4  (3.630 + 0.72) x 10-9

The values of C( 0) in Table IX are plotted versus volume in Fig.

47. We fit these points with a straight line and arrived at

C(QO = (0.657 + 11) x 10 + (-0.126 + 4.3) x 10- 9 0 (232)

so that, in the same manner as for the solid bcc and hcp phases, we have

i specified the equation of state, E(%oT), for the glassy and liquid

states of sodium over the volume and temperature ranges of our calcula-

tions.

U C. Melting

We here discuss in more detail the dynamics of melting of our

ii molecular dynamics system. We concentrate on the calculations performed

at an atomic volume of 256 a3 shown in Fig. 45b.

We may investigate whether or not a particular calculation has

melted in four different ways.

First, as we have already mentioned, we notice which curve in E,TI
space it lies--the solid or the liquid curve. The point labeled 1 in e

Fig. 45b appears to be on the solid curve, 3 is on the liquid curve, and

2 is somewhere in between.

Second, we may evaluate the atomic distribution of particles as dis-

cussed in Sec. IV.D. The atomic distributions for points 1, 2, and 3 atI
.4g

-" - -( ----. mm mm____a______m___nm__mmmm__m_•
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one cime are plotted as the solid lines in Figs. 48a, b, and c, respec-

tively. From these plots no definitive statement may be made about the

state of the system. However, if the particle positions are averaged

I over time for point 1, as shown by the dashed curve in Fig. 48a, the

crystal shell peaks are seen to appear, indicating that the particles are

still oscillating about their lattice positions. When the same averaging

is performed for point 3, the character of the distribution does not

change. The same averaging for point 2 shows less peaking than 1 but more

than 3. Therefore, we have another definitive difference between the

liquid and solid equation-of-state points.

I Thirdly, we may investigate the average distance that a particle is

fr~m its starting lattice position. We do this by calculating the mean-

square displacement, Ar2, defined as

IAr 2, ( )2 (233)

5where r 0 is the initial position of the particle and r is the current
position. We then plot Ar2 versus time. This was done for calculations

3 of points 1, 2, and 3 in Fig. 45b, with the results shown in Fig. 49.

The mean-square displacement for point 1 has settled down to a constant

value so that the average displacement of a particle from its original

position remains constant. The calculated value for point 3, however, -

shows a reasonably constant slope, indicating that atomic diffusion is91

I indeed occurring with particles moving away from their original lattice

sites. The mean-square displacement for point 2 shows behavior in be-

I tween these two extremes, indicating that partial melting is occurring.

Finally, we may look at plots of the positions of the particles

I in space. To help keep track of particles, we have chosen to connect

nearest neighbor particles within each close-packed plane by lines.
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The initial configurations with these lines drawn have already been

SIshown in Figs. 27 and 28. When a particle gets more than 8.0 a0from its

near neighbor, the lines are no longer drawn. Figures 50a, b, and c

I show these plots for points 1, 2, and 3 of Fig. 45b. It is obvious that,

I for the most part, the particles of the calculation of point 1 maintain

N their positions within the crystal structure, while point 3 particles

I are diffusing through the system. For point 2 there seem to be regions

where diffusion is occurring and regions where it is not.

I From the four techniques mentioned above, we can state that point 3

has melted and point 1 has not. Point 2 is in some intermediate state.

I As the error bars on this point in Fig. 45b indicate, it did not reach a

g definite equilibrium state after a rather long molecular dynamics calcu-

lation. The time history of the temperature of this calculation is

shown in Fig. 51. We notice here a long wavelength oscillation of the

average temperature is present, as indicated by the dashed line. This

I calculation has not reached equilibrium. Point 3, however, has reached

equilibrium on the liquid curve at about 400 K and we should be able to

I identify this as an upper limit to the melting temperature of sodium.

IWe may make no such statement about a lower limit because point 1 may be

metastable in the solid phase.

* 3I We investigated the melting of sodium at atomic volumes of 232 a0

and 270 a3 in the same manner as was done for the 256 a3 calculations0 0

I described above. The calculated points marked with arrows in Figs. 45a

and c indicate calculations for which the diffusion and thus the decrease

in temperature was proceeding too slowly to warrant allowing the calcula-

tions to proceed to equilibrium. From the calculated points we may,
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however, place upper limits on the melting temperatures as 430 K for the

232 a03 case and 370 K for the 270 a 
3 case.

0 0
We compare our results with experimental data on sodium to indicate

how realistic our molecular dynamics system is. The estimated upper

limit to the melting temperatures of 400 K is consistent with the ob-

U served melting temperature of 370 K.

25IGingrich and Heaton reported the experimental atomic distribution

for sodium at 373 K. It is shown as the dashed curve of Fig. 52, where

it is compared with our calculated curve for liquid sodium at 400 K.

From the upper curve of Fig. 49 we calculate the self-diffusion co-

I efficient for liquid sodium, which is defined as

D=Ar 2 (234)
6t

I so that D is one-sixth the slope of the curve. We calculate this slope

to be 0.056 a02/TO, which yields a self-diffusion coefficient of D

3.7 x 10- cm 2Is. The experimental value reported by Faber 26is 4.2 x

-5 210 cm Is.

We also compare the difference between the solid and liquid curves

* at constant temperature with the latent heat of fusion for sodium which

-3is 31.7 cal/g -2.32 x 10 Ry/ion. The difference between the solid and3 3
liquid curves at 400 K for the 256 a0 atomic volume case is 1.7 x 10-

Ry/ ion.

The above results indicate that the molecular dynamics system is

* reproducing the essential characteristics of solid and liquid sodium.

D. Dynamic Phase Change

I In this section we investigate the bcc-to-hcp phase change. We

*have already mentioned that the constraint of the fixed boundary
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conditions may cause a system to be metastable. This is why we may per-

form calculations on bcc sodium at low temperatures even though the hcp

system is the preferred phase. Both the bcc and hcp 672-particle systems

I occupy the same volume but the shape of the system boxes is different, as! described in Sec. IV.B. At the end of Sec. IV.B we mentioned that a corm!

pression in the y-direction of the bcc close-packed plane, to form a

Ihexagonal structure and a corresponding increase in the x- and z-direc-
tions of appropriate magnitude to maintain constant volume, may allow the

hcp form to "fit" in the correctly shaped box.

We made this change of shape on a bcc system at a temperature of

I 50 K. The calculation was allowed to equilibrate for 150 time units, as

shown in the time history plots of the potential, kinetic, and total

energies of Fig. 53. The atomic distribution of the system at this time

was that shown in Fig. 54a, and the arrangement of particles is shown in

Fig. 55a. For this figure we have connected the nearest neighbors with

'3 lines for clarity. (For a perfect bcc structure without thermal motion,

all the lines would be either horizontal or vertical in Fig. 55a).

By changing the shape of the box, we created a body-centered tetrag-

i onal system, thus increasing the potential energy discontinuously and

doing work on the system. The jump in potential and total energies is

evident in Fig. 53 and the body-centered tetragonal atomic distribution

and particle positions are shown in Figs. 54b and 55b.

I The system was allowed to equilibrate on its own. The change of

shape had the effect of pushing the system over a potential energy bar-

rier and allowing the particles to find their hcp configuration. This

is attained by the close-packed planes shifting relative to one another,

which is characteristic of martensitic phase transitions. This shifting,1

4 . i n s s
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is indicated by the arrows in Fig. 55b. As the planes shift, the poten-

tial enryis lowered and this is accompanied by a corresponding increase

in the kinetic energy, thus raising the system temperature. The system

I reaches equilibrium as shown in Fig. 53. The atomic distribution for

I this elevated temperature system is shown in Fig. 54c. We then cooled
the system back to about 50 K. The atomic distribution of Fig. 54d shows

I the peaks characteristic of the hcp structure. The particle positions

are shown in Fig. 55c, where the hexagonal structure is apparent. An in-

I vestigation of the stacking of the planes showed that the system did not

equilibrate to a perfect hcp structure, which is an ABABAB. arrangement

of close-packed planes (as discussed in Sec. IV.B), but there are stacking

faults as indicated by the ABC labeling of the planes of Fig. 55c. Such

stacking faults are prevalent in nature.

I We performed a computer experiment on a similar system where we

heated the system close to melting and cooled it down. We found that the

I system would return to the hcp structure, but with stacking faults in dif-

ferent places.

I It is difficult to make any quantitative statements about this demon-

stration. However, it does indicate that a change of shape of the peri-I odic: box is necessary to observe a phase change of the type demonstrated

hr.A shape change is one of the properties that characterizes a mar-

tensitic phase change in nature. A change of shape might not be necessary

if the system size were very large or if free volume existed which would3 ease the constraining effects of the periodic boundaries.

3
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I VII. DISCUSSION AND CONCLUSIONS

i In this paper we have demonstrated that the molecular dynamics
4 technique, coupled with an interaction potential that adequately

describes the ion-ion interaction, can be used to study the macroscopic

properties of a simple metal. This technique is unique in that it

provides a direct calculation of the anharmonic terms in the total system

energy. We calculated and presented these terms as a function of volume

~ I and liquid state of sodium.

We also calculated and discussed the melting of sodium and were

able to reproduce the experimental heat of fusion and put an upper limit

on the melt temperature. We showed, by comparison with the experimental

Iatomic distribu tion and diffusion coefficients, that our calculations

adequately represent the dynamic properties of sodium.

As a final demonstration of the capabilities of this technique,.

j we presented the results of a calculation that reproduces the bcc-hcp

martensitic phase transition in sodium as a dynamic process. Although

this transition was artificially induced by a change of shape of the

calculational volume, it demonstrates that such studies are feasible

I and indicates that such shape changes, which occur in nature, will be

a necessary part of future studies.

The possibilities of future work using this technique are many.

I Although we have the ability to determine the system energy using molec-

ular dynamics, we must look elsewhere to determine the system entropy.

This may be done by performing calculations in regions where the theories

are known to work. For example, a quasi-harmonic theory may be used to
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Idetermine the entropies at low temperatures for the solid. Ideal

f gas or hard-sphere theories may be used at high temperatures for the

liquid. Once the entropy is known, the molecular dynamics results may

be used to integrate for the free energies and thus the thermodynamic

properties will be completely specified. With this done, the phase

I change and melt regions may be determined from a comparison of free

energies.

I The technique slould also prove valuable because it may be

extended to higher density and temperature regions. Such theoretical

determination of the equation-of-state and dynamic properties is applic-

I able to many areas of current interest such as the study of shock-induced

conditions. The fact that the interaction potential is volume dependent

I means that regions of varying densities, which exist (for example) during

the shocking of a material, may be realistically treated.

However, this pseudopotential theory as presented here is limited to

simple metals and compressions of about 50% by the nearly-free-electron

behavior and the theoretical constraint that the ion cores do not overlap.

The extension of the theory to handle systems with more complicated

electronic structures is being done (see, for example, Ref s. 1, 2, 6,

I and 7) and there is no compelling reason why the theory could not be

developed and this technique applied even after the ion cores overlap

and ionization occurs. We would then be able to calculate the properties

I of materials at very high temperatures and pressures that are not easily

accessible to experiment.
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APPENDIX A

CALCULATE VALUES OF THE EFFECTIVE ION-ION INTERACTION POTENTIAL AND
FORCE FOR SODIUM AT AN ATOMIC VOLUME OF 256 a0

* (The potential and force are given by Eqs. (140) and (141) and are
plotted in Figs. 9 and 10.)
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Radius Potential Force
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IRadius Potential Force
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APPENDIX B

I CALCULATION OF THE KURTOSIS, C, FOR A MICROCANONICAL ENSEMBLE
OF A ONE-DIMENSIONAL CHAIN OF HARD RODS*

I 4-

Ia

r I0 L7
For a microcanonical ensemble the energy, number of rods, and volume

I are constant.

E - energy

P - radius of the constant energy hypersphere in momentum

i space = (2mE)

L - system length

I N = number of rods

Pij = momentum of ith particle

I VN(p) - volume of an N-dimensional hypersphere of radius p

For this system we have

E = Nkt P2
2 2m

N 5

P = Pii=l ,

E Pi -0 (center of mass fixed)

n N
P _i ,n n =1,2,'''

i I *Based on a calculation by Brad Lee !?'olian, Los Alamos National Laboratory.

at
Wa'- -
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and

(2mE) 4 P < [2m(E + AE)!1/2

in the limit as

AP _ lAE o
P 2 E

The partition function for the microcanonical ensemble is
29

Z N 1 IMf dpl fdP 2 ...JfdpN fdq fd 2 ...Idq N
N!hf

where * implies that the momentum is constrained to be on the N-dimen-

sional hypersphere of radius P - (2mE) , a constant energy surface.

L - Na is the length available to each particle, so that

L LNO N
ZN - 1- Lo dq)f dp*..fd

. (L - NO)N lim (V (P + AP) - VN(P)]

N!hN AP
P 0.

nThe average of the quantity P is given by

N * ~ N
S(L - N) P dPN n

N N!hN i-l

We now define

N
I n(P) f dpi... f JdpN Pi

so that

o. -- .... ....... "v " -.. ...
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I (P + P) - I n(P)
un~pn lim n

6? V n(P + AP) -v n(P)1--0 -n

. _

In(P) is an N-dimensional hypersphere integral.

30
The volume, VN(P) is given by N

V ( N/2 pN V V (1)N
NP) r[(Nl2) + 1] N

For n odd

In(P) 0
n

Iand for n even

I (P) N ( r[(N/2) + II[(N + 1)12.] pN+n

n N Fr[(N + n)/2 + llr(1/2)

We now expand

I (p Ap)N+n pN+n N+n[(1 +AP N+n

+-nr + (N + n) -+ +
-- . P

= (N + n) A?+I P

so that 
..

I (P + l l) 1 + ) l I(NI2) + 1)/21 N+n AP

I n (P+L) In (P N '( (N + n/+1]12) (N + n)P -- *

and similarlyI

N N1 -. 4N (1 ) pN AP +I VN(P + -P V N(P) - VN(1) (P + A) N T

so that
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I
p122 (P + p) - (P)

&P 0 VN

= Pn (N + n) rf(N/2) + 1I[(N + 1)/2]

r[(N + n)/2 + 1]F(I/2)

and we see that

n -0 O p0 N ,

V n 1 P n

nan2 p and

n n 4 :4 - m - .-

So, on usingI_
I and

___ (2mE) ' 2 .l2_tn/
2  n/ cNT 2

INmn Nmn  Nk(m;- / N \ m /

we may calculate the kurtosis, C, in terms of the velocity moments. 
-4

C. V - -3V2 ,

P, p .p V2 . TA

i 4 3P4  4 3N (kT 2
-4 + - v2 V4 N +2'

I so that

C -6 (kTr
2

I N + 2 m

I I IL
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I or for large N

CI5 k 2
I which is the result used in the text in Sec. IV.D.

I

KI
I

I

I
i
i
I

I

I
I,

4.
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APPENDIX C

CALCULATED EQUATION-OF-STATE POINTS FOR hcp, bcc, AND LIQUID SODIUM

I The equation-of-state points are tabulated according to the ini-

tial configuration of the system. For example, the high temperature

I bcc calculations are reported with the bcc results even though the sys-

tem may have melted. All calculations for which the initial conditionIwas the glassy state are reported as equation-of-state points for liquid£

* "i sodium. The reported errors are the standard deviations of the means

and represent the fluctuations of the system temperature and total en-

ergy at equilibrium.

T Error Energy Error

(K) (K) (Ry) (x 10- 6 Ry)

hcp Structure 98.83 0.4 -0.456570 0.4
=0 232, 0= -0.458465

198.01 0.7 -0.454657 0.4
(ERRATA: Add -0.015559 Ry
to energy values) 294.48 0.5 -0.452755 0.6

hcp Structure 99.63 0.3 -0.456778 0.2
0 250, = 

f -0.458682

198.60 0.5 -0.454864 0.3
(ERRATA: Add -0.015960 Ry
to energy values) 293.98 0.4 -0.452962 0.6

hcp Structure 10.03 0.04 -0.458394 0.060 256, 0D -0.458585
49.68 0.3 -0.457634 0.2

(ERRATA: Add -0.056089 Ry
to energy values) 99.19 0.3 -0.456685 0.2

1 198.11 0.5 -0.454771 0.2

293.27 0.4 -0.452873 0.5

?
Ii

- = - i, , ,I i I • i i I I
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Error
T Error Energy

(K) (K) (Ry) (x 10- Ry)

hcp Structure 20.01 0.08 -0.457743 0.1
=0 270, 410 = 0.458131

2 0 49.31 0.3 -0.457176 0.2

(ERRATA: Add -0.016374 Ry

to energy values) 98.73 0.3 -0.456227 0.2

1 196.09 0.4 -0.454313 0.3

291.93 0.4 -0.452416 0.5

bcc Structure 100.43 0.5 -0.456472 0.4

Q 0 i 232, (P = -0.458447 199.62 0.8 -0.454558 0.6

(ERRATA: Add -0.15559 Ryj to energy values) 296.41 0.8 -0.452656 0.6

390.78 0.6 -0.450747 1.0

432.10 0.5 -0.447884 0.6

463.88 -0.448818 (not
equilibrated)

476.88 -0.446919 (not
equilibrated)

bcc Structure 100.36 0.6 -0.456650 0.4

4f Q 250, % = -0.4585510 0 198.76 0.8 -0.454737 0.5

I (ERRATA: Add -0.015960 Ry
to energy values) 296.26 0.4 -0.452830 0.6

bcc Structure 10.04 0.05 -0.458256 0.07 j
Q0 = 256, €0 -0.458447

50.37 0.2 -0.457495 0.1

(ERRATA: Add -0.016089 Ry -

to energy values) 100.15 0.6 -0.456546 0.4

198.33 0.8 -0.454635 0.5

294.28 0.3 -0.452744 0.3

294.86 0.3 -0.452729 0.4

1 343.94 0.4 -0.451768 0.4

387.94 0.6 -0.450851 0.5

399.13 0.5 -0.448906 0.51 i

I

I 1 Kai ila ma an ~
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T Error Energy Error

(K) (K) (Ry) .1-6

bcc Structure 408.32 -0.449869 (not

Q0- 256, 4 0 -0.458447 equilibrated)
0 0 488.28 0.6 -0.447009 0.7

(cont) 587.46 1.0 -0.445122 1.0

bcc Structure 99.11 0.5 -0.456066 0.4VQ I 270, 40 = -0.457963 199.23 0.4 -0.454153 0.4

(ERRATA: Add -0.16374 Ry 199.23 0.4 -0.454153 0.4

I to energy values) 246.98 0.4 -0.453214 0.5

295.08 0.3 -0.452261 0.5

340.82 0.5 -0.451290 0.6

(not
374.16 -0.450357 equilibrated)

404.68 -0.449395 (not
equilibrated)

411.31 0.7 -0.448432 i.0

498.54 0.6 -0.446535 0.7

Liquid, 0 = 232 10.01 -0.456692

(ERRATA: Add -0.015559 Ry 12.78 -0.456693 (not st, le)

to energy values)
19.24 -0.456538

31.79 0.02 -0.456269 0.01

82.54 0.2 -0.455298 0.07

I 125.17 0.2 -0.454516 0.1

183.37 0.3 -0.453373 0.2

248.42 0.5 -0.452092 0.3

329.61 0.6 -0.450440 0.4

403.75 0.5 -0.448639 0.4I

I ,
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T Error Energy Error

(K) (K) (Ry) (x 10 Ry)

Liquid, 0 256 17.83 -0.456862 (not stable)

I (ERRATA: Add -0.016089 Ry 30.70 0.03 -0.456593 0.03
to energy values) 70.47 0.2 -0.455727 0.1

137.61 0.4 -0.454357 0.1

I 229.80 0.3 -0.452499 0.2

229.96 0.4 -0.452444 0.3

I 263.39 0.4 -0.451672 0.2

358.78 0.3 -0.449743 0.2

I 374.80 0.6 -0.449574 0.4

I 482.73 0.9 -0.447149 0.7

Liquid, E0- 270 7.10 -0.456667 (not stable)

(ERRATA: Add -0. 016374 Ry 30.06 0.04 -0.456244 0.02
to energy values)

I 62.04 0.1 -0.455619 0.06

142.79 0.4 -0.454108 0.2

i 194.91 0.4 -0.453033 0.2

262.31 0.6 -0.451668 0.3

307.33 0.6 -0.450628 0.3

I 396.01 0.4 -0.448595 0.3

I

I -*
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